Metamath Proof Explorer


Theorem xpord3ind

Description: Induction over the triple cross product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 4-Sep-2024)

Ref Expression
Hypotheses xpord3.1 U = x y | x A × B × C y A × B × C 1 st 1 st x R 1 st 1 st y 1 st 1 st x = 1 st 1 st y 2 nd 1 st x S 2 nd 1 st y 2 nd 1 st x = 2 nd 1 st y 2 nd x T 2 nd y 2 nd x = 2 nd y x y
xpord3ind.1 R Fr A
xpord3ind.2 R Po A
xpord3ind.3 R Se A
xpord3ind.4 S Fr B
xpord3ind.5 S Po B
xpord3ind.6 S Se B
xpord3ind.7 T Fr C
xpord3ind.8 T Po C
xpord3ind.9 T Se C
xpord3ind.10 a = d φ ψ
xpord3ind.11 b = e ψ χ
xpord3ind.12 c = f χ θ
xpord3ind.13 a = d τ θ
xpord3ind.14 b = e η τ
xpord3ind.15 b = e ζ θ
xpord3ind.16 c = f σ τ
xpord3ind.17 a = X φ ρ
xpord3ind.18 b = Y ρ μ
xpord3ind.19 c = Z μ λ
xpord3ind.i a A b B c C d Pred R A a e Pred S B b f Pred T C c θ d Pred R A a e Pred S B b χ d Pred R A a f Pred T C c ζ d Pred R A a ψ e Pred S B b f Pred T C c τ e Pred S B b σ f Pred T C c η φ
Assertion xpord3ind X A Y B Z C λ

Proof

Step Hyp Ref Expression
1 xpord3.1 U = x y | x A × B × C y A × B × C 1 st 1 st x R 1 st 1 st y 1 st 1 st x = 1 st 1 st y 2 nd 1 st x S 2 nd 1 st y 2 nd 1 st x = 2 nd 1 st y 2 nd x T 2 nd y 2 nd x = 2 nd y x y
2 xpord3ind.1 R Fr A
3 xpord3ind.2 R Po A
4 xpord3ind.3 R Se A
5 xpord3ind.4 S Fr B
6 xpord3ind.5 S Po B
7 xpord3ind.6 S Se B
8 xpord3ind.7 T Fr C
9 xpord3ind.8 T Po C
10 xpord3ind.9 T Se C
11 xpord3ind.10 a = d φ ψ
12 xpord3ind.11 b = e ψ χ
13 xpord3ind.12 c = f χ θ
14 xpord3ind.13 a = d τ θ
15 xpord3ind.14 b = e η τ
16 xpord3ind.15 b = e ζ θ
17 xpord3ind.16 c = f σ τ
18 xpord3ind.17 a = X φ ρ
19 xpord3ind.18 b = Y ρ μ
20 xpord3ind.19 c = Z μ λ
21 xpord3ind.i a A b B c C d Pred R A a e Pred S B b f Pred T C c θ d Pred R A a e Pred S B b χ d Pred R A a f Pred T C c ζ d Pred R A a ψ e Pred S B b f Pred T C c τ e Pred S B b σ f Pred T C c η φ
22 2 a1i R Fr A
23 5 a1i S Fr B
24 8 a1i T Fr C
25 1 22 23 24 frxp3 U Fr A × B × C
26 25 mptru U Fr A × B × C
27 3 a1i R Po A
28 6 a1i S Po B
29 9 a1i T Po C
30 1 27 28 29 poxp3 U Po A × B × C
31 30 mptru U Po A × B × C
32 4 a1i R Se A
33 7 a1i S Se B
34 10 a1i T Se C
35 1 32 33 34 sexp3 U Se A × B × C
36 35 mptru U Se A × B × C
37 26 31 36 3pm3.2i U Fr A × B × C U Po A × B × C U Se A × B × C
38 1 xpord3pred a A b B c C Pred U A × B × C a b c = Pred R A a a × Pred S B b b × Pred T C c c a b c
39 38 eleq2d a A b B c C d e f Pred U A × B × C a b c d e f Pred R A a a × Pred S B b b × Pred T C c c a b c
40 39 imbi1d a A b B c C d e f Pred U A × B × C a b c θ d e f Pred R A a a × Pred S B b b × Pred T C c c a b c θ
41 eldifsn d e f Pred R A a a × Pred S B b b × Pred T C c c a b c d e f Pred R A a a × Pred S B b b × Pred T C c c d e f a b c
42 ot2elxp d e f Pred R A a a × Pred S B b b × Pred T C c c d Pred R A a a e Pred S B b b f Pred T C c c
43 vex d V
44 vex e V
45 vex f V
46 43 44 45 otthne d e f a b c d a e b f c
47 42 46 anbi12i d e f Pred R A a a × Pred S B b b × Pred T C c c d e f a b c d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c
48 41 47 bitri d e f Pred R A a a × Pred S B b b × Pred T C c c a b c d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c
49 48 imbi1i d e f Pred R A a a × Pred S B b b × Pred T C c c a b c θ d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ
50 impexp d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ
51 49 50 bitr2i d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d e f Pred R A a a × Pred S B b b × Pred T C c c a b c θ
52 40 51 bitr4di a A b B c C d e f Pred U A × B × C a b c θ d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ
53 52 albidv a A b B c C f d e f Pred U A × B × C a b c θ f d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ
54 53 2albidv a A b B c C d e f d e f Pred U A × B × C a b c θ d e f d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ
55 r3al d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d e f d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ
56 54 55 bitr4di a A b B c C d e f d e f Pred U A × B × C a b c θ d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ
57 ssun1 Pred R A a Pred R A a a
58 ssralv Pred R A a Pred R A a a d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a e Pred S B b b f Pred T C c c d a e b f c θ
59 57 58 ax-mp d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a e Pred S B b b f Pred T C c c d a e b f c θ
60 ssun1 Pred S B b Pred S B b b
61 ssralv Pred S B b Pred S B b b e Pred S B b b f Pred T C c c d a e b f c θ e Pred S B b f Pred T C c c d a e b f c θ
62 60 61 ax-mp e Pred S B b b f Pred T C c c d a e b f c θ e Pred S B b f Pred T C c c d a e b f c θ
63 ssun1 Pred T C c Pred T C c c
64 ssralv Pred T C c Pred T C c c f Pred T C c c d a e b f c θ f Pred T C c d a e b f c θ
65 63 64 ax-mp f Pred T C c c d a e b f c θ f Pred T C c d a e b f c θ
66 65 ralimi e Pred S B b f Pred T C c c d a e b f c θ e Pred S B b f Pred T C c d a e b f c θ
67 62 66 syl e Pred S B b b f Pred T C c c d a e b f c θ e Pred S B b f Pred T C c d a e b f c θ
68 67 ralimi d Pred R A a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a e Pred S B b f Pred T C c d a e b f c θ
69 predpoirr T Po C ¬ c Pred T C c
70 9 69 ax-mp ¬ c Pred T C c
71 eleq1w f = c f Pred T C c c Pred T C c
72 70 71 mtbiri f = c ¬ f Pred T C c
73 72 necon2ai f Pred T C c f c
74 73 3mix3d f Pred T C c d a e b f c
75 pm2.27 d a e b f c d a e b f c θ θ
76 74 75 syl f Pred T C c d a e b f c θ θ
77 76 ralimia f Pred T C c d a e b f c θ f Pred T C c θ
78 77 2ralimi d Pred R A a e Pred S B b f Pred T C c d a e b f c θ d Pred R A a e Pred S B b f Pred T C c θ
79 59 68 78 3syl d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a e Pred S B b f Pred T C c θ
80 ssun2 c Pred T C c c
81 ssralv c Pred T C c c f Pred T C c c d a e b f c θ f c d a e b f c θ
82 80 81 ax-mp f Pred T C c c d a e b f c θ f c d a e b f c θ
83 82 ralimi e Pred S B b f Pred T C c c d a e b f c θ e Pred S B b f c d a e b f c θ
84 62 83 syl e Pred S B b b f Pred T C c c d a e b f c θ e Pred S B b f c d a e b f c θ
85 84 ralimi d Pred R A a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a e Pred S B b f c d a e b f c θ
86 59 85 syl d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a e Pred S B b f c d a e b f c θ
87 vex c V
88 biidd f = c d a d a
89 biidd f = c e b e b
90 neeq1 f = c f c c c
91 88 89 90 3orbi123d f = c d a e b f c d a e b c c
92 13 bicomd c = f θ χ
93 92 equcoms f = c θ χ
94 91 93 imbi12d f = c d a e b f c θ d a e b c c χ
95 87 94 ralsn f c d a e b f c θ d a e b c c χ
96 95 2ralbii d Pred R A a e Pred S B b f c d a e b f c θ d Pred R A a e Pred S B b d a e b c c χ
97 86 96 sylib d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a e Pred S B b d a e b c c χ
98 predpoirr S Po B ¬ b Pred S B b
99 6 98 ax-mp ¬ b Pred S B b
100 eleq1w e = b e Pred S B b b Pred S B b
101 99 100 mtbiri e = b ¬ e Pred S B b
102 101 necon2ai e Pred S B b e b
103 102 3mix2d e Pred S B b d a e b c c
104 pm2.27 d a e b c c d a e b c c χ χ
105 103 104 syl e Pred S B b d a e b c c χ χ
106 105 ralimia e Pred S B b d a e b c c χ e Pred S B b χ
107 106 ralimi d Pred R A a e Pred S B b d a e b c c χ d Pred R A a e Pred S B b χ
108 97 107 syl d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a e Pred S B b χ
109 ssun2 b Pred S B b b
110 ssralv b Pred S B b b e Pred S B b b f Pred T C c c d a e b f c θ e b f Pred T C c c d a e b f c θ
111 109 110 ax-mp e Pred S B b b f Pred T C c c d a e b f c θ e b f Pred T C c c d a e b f c θ
112 65 ralimi e b f Pred T C c c d a e b f c θ e b f Pred T C c d a e b f c θ
113 111 112 syl e Pred S B b b f Pred T C c c d a e b f c θ e b f Pred T C c d a e b f c θ
114 113 ralimi d Pred R A a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a e b f Pred T C c d a e b f c θ
115 59 114 syl d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a e b f Pred T C c d a e b f c θ
116 vex b V
117 biidd e = b d a d a
118 neeq1 e = b e b b b
119 biidd e = b f c f c
120 117 118 119 3orbi123d e = b d a e b f c d a b b f c
121 equcom b = e e = b
122 bicom ζ θ θ ζ
123 16 121 122 3imtr3i e = b θ ζ
124 120 123 imbi12d e = b d a e b f c θ d a b b f c ζ
125 124 ralbidv e = b f Pred T C c d a e b f c θ f Pred T C c d a b b f c ζ
126 116 125 ralsn e b f Pred T C c d a e b f c θ f Pred T C c d a b b f c ζ
127 126 ralbii d Pred R A a e b f Pred T C c d a e b f c θ d Pred R A a f Pred T C c d a b b f c ζ
128 115 127 sylib d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a f Pred T C c d a b b f c ζ
129 73 3mix3d f Pred T C c d a b b f c
130 pm2.27 d a b b f c d a b b f c ζ ζ
131 129 130 syl f Pred T C c d a b b f c ζ ζ
132 131 ralimia f Pred T C c d a b b f c ζ f Pred T C c ζ
133 132 ralimi d Pred R A a f Pred T C c d a b b f c ζ d Pred R A a f Pred T C c ζ
134 128 133 syl d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a f Pred T C c ζ
135 79 108 134 3jca d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a e Pred S B b f Pred T C c θ d Pred R A a e Pred S B b χ d Pred R A a f Pred T C c ζ
136 82 ralimi e b f Pred T C c c d a e b f c θ e b f c d a e b f c θ
137 111 136 syl e Pred S B b b f Pred T C c c d a e b f c θ e b f c d a e b f c θ
138 137 ralimi d Pred R A a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a e b f c d a e b f c θ
139 59 138 syl d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a e b f c d a e b f c θ
140 95 ralbii e b f c d a e b f c θ e b d a e b c c χ
141 biidd e = b c c c c
142 117 118 141 3orbi123d e = b d a e b c c d a b b c c
143 12 bicomd b = e χ ψ
144 143 equcoms e = b χ ψ
145 142 144 imbi12d e = b d a e b c c χ d a b b c c ψ
146 116 145 ralsn e b d a e b c c χ d a b b c c ψ
147 140 146 bitri e b f c d a e b f c θ d a b b c c ψ
148 147 ralbii d Pred R A a e b f c d a e b f c θ d Pred R A a d a b b c c ψ
149 139 148 sylib d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a d a b b c c ψ
150 predpoirr R Po A ¬ a Pred R A a
151 3 150 ax-mp ¬ a Pred R A a
152 eleq1w d = a d Pred R A a a Pred R A a
153 151 152 mtbiri d = a ¬ d Pred R A a
154 153 necon2ai d Pred R A a d a
155 154 3mix1d d Pred R A a d a b b c c
156 pm2.27 d a b b c c d a b b c c ψ ψ
157 155 156 syl d Pred R A a d a b b c c ψ ψ
158 157 ralimia d Pred R A a d a b b c c ψ d Pred R A a ψ
159 149 158 syl d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a ψ
160 ssun2 a Pred R A a a
161 ssralv a Pred R A a a d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d a e Pred S B b b f Pred T C c c d a e b f c θ
162 160 161 ax-mp d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d a e Pred S B b b f Pred T C c c d a e b f c θ
163 67 ralimi d a e Pred S B b b f Pred T C c c d a e b f c θ d a e Pred S B b f Pred T C c d a e b f c θ
164 162 163 syl d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d a e Pred S B b f Pred T C c d a e b f c θ
165 vex a V
166 neeq1 d = a d a a a
167 biidd d = a e b e b
168 biidd d = a f c f c
169 166 167 168 3orbi123d d = a d a e b f c a a e b f c
170 14 equcoms d = a τ θ
171 170 bicomd d = a θ τ
172 169 171 imbi12d d = a d a e b f c θ a a e b f c τ
173 172 2ralbidv d = a e Pred S B b f Pred T C c d a e b f c θ e Pred S B b f Pred T C c a a e b f c τ
174 165 173 ralsn d a e Pred S B b f Pred T C c d a e b f c θ e Pred S B b f Pred T C c a a e b f c τ
175 164 174 sylib d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ e Pred S B b f Pred T C c a a e b f c τ
176 73 3mix3d f Pred T C c a a e b f c
177 pm2.27 a a e b f c a a e b f c τ τ
178 176 177 syl f Pred T C c a a e b f c τ τ
179 178 ralimia f Pred T C c a a e b f c τ f Pred T C c τ
180 179 ralimi e Pred S B b f Pred T C c a a e b f c τ e Pred S B b f Pred T C c τ
181 175 180 syl d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ e Pred S B b f Pred T C c τ
182 84 ralimi d a e Pred S B b b f Pred T C c c d a e b f c θ d a e Pred S B b f c d a e b f c θ
183 162 182 syl d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d a e Pred S B b f c d a e b f c θ
184 172 2ralbidv d = a e Pred S B b f c d a e b f c θ e Pred S B b f c a a e b f c τ
185 165 184 ralsn d a e Pred S B b f c d a e b f c θ e Pred S B b f c a a e b f c τ
186 biidd f = c a a a a
187 186 89 90 3orbi123d f = c a a e b f c a a e b c c
188 17 bicomd c = f τ σ
189 188 equcoms f = c τ σ
190 187 189 imbi12d f = c a a e b f c τ a a e b c c σ
191 87 190 ralsn f c a a e b f c τ a a e b c c σ
192 191 ralbii e Pred S B b f c a a e b f c τ e Pred S B b a a e b c c σ
193 185 192 bitri d a e Pred S B b f c d a e b f c θ e Pred S B b a a e b c c σ
194 183 193 sylib d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ e Pred S B b a a e b c c σ
195 102 3mix2d e Pred S B b a a e b c c
196 pm2.27 a a e b c c a a e b c c σ σ
197 195 196 syl e Pred S B b a a e b c c σ σ
198 197 ralimia e Pred S B b a a e b c c σ e Pred S B b σ
199 194 198 syl d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ e Pred S B b σ
200 159 181 199 3jca d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a ψ e Pred S B b f Pred T C c τ e Pred S B b σ
201 113 ralimi d a e Pred S B b b f Pred T C c c d a e b f c θ d a e b f Pred T C c d a e b f c θ
202 162 201 syl d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d a e b f Pred T C c d a e b f c θ
203 172 2ralbidv d = a e b f Pred T C c d a e b f c θ e b f Pred T C c a a e b f c τ
204 165 203 ralsn d a e b f Pred T C c d a e b f c θ e b f Pred T C c a a e b f c τ
205 biidd e = b a a a a
206 205 118 119 3orbi123d e = b a a e b f c a a b b f c
207 15 equcoms e = b η τ
208 207 bicomd e = b τ η
209 206 208 imbi12d e = b a a e b f c τ a a b b f c η
210 209 ralbidv e = b f Pred T C c a a e b f c τ f Pred T C c a a b b f c η
211 116 210 ralsn e b f Pred T C c a a e b f c τ f Pred T C c a a b b f c η
212 204 211 bitri d a e b f Pred T C c d a e b f c θ f Pred T C c a a b b f c η
213 202 212 sylib d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ f Pred T C c a a b b f c η
214 73 3mix3d f Pred T C c a a b b f c
215 pm2.27 a a b b f c a a b b f c η η
216 214 215 syl f Pred T C c a a b b f c η η
217 216 ralimia f Pred T C c a a b b f c η f Pred T C c η
218 213 217 syl d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ f Pred T C c η
219 135 200 218 3jca d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ d Pred R A a e Pred S B b f Pred T C c θ d Pred R A a e Pred S B b χ d Pred R A a f Pred T C c ζ d Pred R A a ψ e Pred S B b f Pred T C c τ e Pred S B b σ f Pred T C c η
220 219 21 syl5 a A b B c C d Pred R A a a e Pred S B b b f Pred T C c c d a e b f c θ φ
221 56 220 sylbid a A b B c C d e f d e f Pred U A × B × C a b c θ φ
222 221 11 12 13 18 19 20 frpoins3xp3g U Fr A × B × C U Po A × B × C U Se A × B × C X A Y B Z C λ
223 37 222 mpan X A Y B Z C λ