Metamath Proof Explorer


Theorem xpord3indd

Description: Induction over the triple Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 2-Feb-2025)

Ref Expression
Hypotheses xpord3indd.x κXA
xpord3indd.y κYB
xpord3indd.z κZC
xpord3indd.1 κRFrA
xpord3indd.2 κRPoA
xpord3indd.3 κRSeA
xpord3indd.4 κSFrB
xpord3indd.5 κSPoB
xpord3indd.6 κSSeB
xpord3indd.7 κTFrC
xpord3indd.8 κTPoC
xpord3indd.9 κTSeC
xpord3indd.10 a=dφψ
xpord3indd.11 b=eψχ
xpord3indd.12 c=fχθ
xpord3indd.13 a=dτθ
xpord3indd.14 b=eητ
xpord3indd.15 b=eζθ
xpord3indd.16 c=fστ
xpord3indd.17 a=Xφρ
xpord3indd.18 b=Yρμ
xpord3indd.19 c=Zμλ
xpord3indd.i κaAbBcCdPredRAaePredSBbfPredTCcθdPredRAaePredSBbχdPredRAafPredTCcζdPredRAaψePredSBbfPredTCcτePredSBbσfPredTCcηφ
Assertion xpord3indd κλ

Proof

Step Hyp Ref Expression
1 xpord3indd.x κXA
2 xpord3indd.y κYB
3 xpord3indd.z κZC
4 xpord3indd.1 κRFrA
5 xpord3indd.2 κRPoA
6 xpord3indd.3 κRSeA
7 xpord3indd.4 κSFrB
8 xpord3indd.5 κSPoB
9 xpord3indd.6 κSSeB
10 xpord3indd.7 κTFrC
11 xpord3indd.8 κTPoC
12 xpord3indd.9 κTSeC
13 xpord3indd.10 a=dφψ
14 xpord3indd.11 b=eψχ
15 xpord3indd.12 c=fχθ
16 xpord3indd.13 a=dτθ
17 xpord3indd.14 b=eητ
18 xpord3indd.15 b=eζθ
19 xpord3indd.16 c=fστ
20 xpord3indd.17 a=Xφρ
21 xpord3indd.18 b=Yρμ
22 xpord3indd.19 c=Zμλ
23 xpord3indd.i κaAbBcCdPredRAaePredSBbfPredTCcθdPredRAaePredSBbχdPredRAafPredTCcζdPredRAaψePredSBbfPredTCcτePredSBbσfPredTCcηφ
24 eqid xy|xA×B×CyA×B×C1st1stxR1st1sty1st1stx=1st1sty2nd1stxS2nd1sty2nd1stx=2nd1sty2ndxT2ndy2ndx=2ndyxy=xy|xA×B×CyA×B×C1st1stxR1st1sty1st1stx=1st1sty2nd1stxS2nd1sty2nd1stx=2nd1sty2ndxT2ndy2ndx=2ndyxy
25 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 xpord3inddlem κλ