Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Ordering on Cartesian products
xpord3indd
Metamath Proof Explorer
Description: Induction over the triple Cartesian product ordering. Note that the
substitutions cover all possible cases of membership in the predecessor
class. (Contributed by Scott Fenton , 2-Feb-2025)
Ref
Expression
Hypotheses
xpord3indd.x
xpord3indd.y
xpord3indd.z
xpord3indd.1
xpord3indd.2
xpord3indd.3
xpord3indd.4
xpord3indd.5
xpord3indd.6
xpord3indd.7
xpord3indd.8
xpord3indd.9
xpord3indd.10
xpord3indd.11
xpord3indd.12
xpord3indd.13
xpord3indd.14
xpord3indd.15
xpord3indd.16
xpord3indd.17
xpord3indd.18
xpord3indd.19
xpord3indd.i
Assertion
xpord3indd
Proof
Step
Hyp
Ref
Expression
1
xpord3indd.x
2
xpord3indd.y
3
xpord3indd.z
4
xpord3indd.1
5
xpord3indd.2
6
xpord3indd.3
7
xpord3indd.4
8
xpord3indd.5
9
xpord3indd.6
10
xpord3indd.7
11
xpord3indd.8
12
xpord3indd.9
13
xpord3indd.10
14
xpord3indd.11
15
xpord3indd.12
16
xpord3indd.13
17
xpord3indd.14
18
xpord3indd.15
19
xpord3indd.16
20
xpord3indd.17
21
xpord3indd.18
22
xpord3indd.19
23
xpord3indd.i
24
eqid
25
24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
xpord3inddlem