Metamath Proof Explorer
		
		
		
		Description:  Addition to both sides of surreal less-than or equal.  Theorem 5 of
       Conway p. 18.  (Contributed by Scott Fenton, 21-Jan-2025)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | addscand.1 | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
					
						|  |  | addscand.2 | ⊢ ( 𝜑  →  𝐵  ∈   No  ) | 
					
						|  |  | addscand.3 | ⊢ ( 𝜑  →  𝐶  ∈   No  ) | 
				
					|  | Assertion | sleadd1d | ⊢  ( 𝜑  →  ( 𝐴  ≤s  𝐵  ↔  ( 𝐴  +s  𝐶 )  ≤s  ( 𝐵  +s  𝐶 ) ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | addscand.1 | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
						
							| 2 |  | addscand.2 | ⊢ ( 𝜑  →  𝐵  ∈   No  ) | 
						
							| 3 |  | addscand.3 | ⊢ ( 𝜑  →  𝐶  ∈   No  ) | 
						
							| 4 |  | sleadd1 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐴  ≤s  𝐵  ↔  ( 𝐴  +s  𝐶 )  ≤s  ( 𝐵  +s  𝐶 ) ) ) | 
						
							| 5 | 1 2 3 4 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴  ≤s  𝐵  ↔  ( 𝐴  +s  𝐶 )  ≤s  ( 𝐵  +s  𝐶 ) ) ) |