Metamath Proof Explorer


Theorem sleadd2d

Description: Addition to both sides of surreal less-than or equal. (Contributed by Scott Fenton, 5-Feb-2025)

Ref Expression
Hypotheses addscand.1 âŠĒ ( 𝜑 → ðī ∈ No )
addscand.2 âŠĒ ( 𝜑 → ðĩ ∈ No )
addscand.3 âŠĒ ( 𝜑 → ðķ ∈ No )
Assertion sleadd2d ( 𝜑 → ( ðī â‰Īs ðĩ ↔ ( ðķ +s ðī ) â‰Īs ( ðķ +s ðĩ ) ) )

Proof

Step Hyp Ref Expression
1 addscand.1 âŠĒ ( 𝜑 → ðī ∈ No )
2 addscand.2 âŠĒ ( 𝜑 → ðĩ ∈ No )
3 addscand.3 âŠĒ ( 𝜑 → ðķ ∈ No )
4 sleadd2 âŠĒ ( ( ðī ∈ No ∧ ðĩ ∈ No ∧ ðķ ∈ No ) → ( ðī â‰Īs ðĩ ↔ ( ðķ +s ðī ) â‰Īs ( ðķ +s ðĩ ) ) )
5 1 2 3 4 syl3anc âŠĒ ( 𝜑 → ( ðī â‰Īs ðĩ ↔ ( ðķ +s ðī ) â‰Īs ( ðķ +s ðĩ ) ) )