Metamath Proof Explorer


Theorem sleadd2d

Description: Addition to both sides of surreal less-than or equal. (Contributed by Scott Fenton, 5-Feb-2025)

Ref Expression
Hypotheses addscand.1 φANo
addscand.2 φBNo
addscand.3 φCNo
Assertion sleadd2d Could not format assertion : No typesetting found for |- ( ph -> ( A <_s B <-> ( C +s A ) <_s ( C +s B ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 addscand.1 φANo
2 addscand.2 φBNo
3 addscand.3 φCNo
4 sleadd2 Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( A <_s B <-> ( C +s A ) <_s ( C +s B ) ) ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( A <_s B <-> ( C +s A ) <_s ( C +s B ) ) ) with typecode |-
5 1 2 3 4 syl3anc Could not format ( ph -> ( A <_s B <-> ( C +s A ) <_s ( C +s B ) ) ) : No typesetting found for |- ( ph -> ( A <_s B <-> ( C +s A ) <_s ( C +s B ) ) ) with typecode |-