Description: Addition to both sides of surreal less-than or equal. (Contributed by Scott Fenton, 5-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | addscand.1 | |- ( ph -> A e. No ) | |
| addscand.2 | |- ( ph -> B e. No ) | ||
| addscand.3 | |- ( ph -> C e. No ) | ||
| Assertion | sleadd2d | |- ( ph -> ( A <_s B <-> ( C +s A ) <_s ( C +s B ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | addscand.1 | |- ( ph -> A e. No ) | |
| 2 | addscand.2 | |- ( ph -> B e. No ) | |
| 3 | addscand.3 | |- ( ph -> C e. No ) | |
| 4 | sleadd2 | |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( A <_s B <-> ( C +s A ) <_s ( C +s B ) ) ) | |
| 5 | 1 2 3 4 | syl3anc | |- ( ph -> ( A <_s B <-> ( C +s A ) <_s ( C +s B ) ) ) |