Metamath Proof Explorer


Theorem sleadd2d

Description: Addition to both sides of surreal less-than or equal. (Contributed by Scott Fenton, 5-Feb-2025)

Ref Expression
Hypotheses addscand.1
|- ( ph -> A e. No )
addscand.2
|- ( ph -> B e. No )
addscand.3
|- ( ph -> C e. No )
Assertion sleadd2d
|- ( ph -> ( A <_s B <-> ( C +s A ) <_s ( C +s B ) ) )

Proof

Step Hyp Ref Expression
1 addscand.1
 |-  ( ph -> A e. No )
2 addscand.2
 |-  ( ph -> B e. No )
3 addscand.3
 |-  ( ph -> C e. No )
4 sleadd2
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( A <_s B <-> ( C +s A ) <_s ( C +s B ) ) )
5 1 2 3 4 syl3anc
 |-  ( ph -> ( A <_s B <-> ( C +s A ) <_s ( C +s B ) ) )