Metamath Proof Explorer


Theorem sltadd2d

Description: Addition to both sides of surreal less-than. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Hypotheses addscand.1 φANo
addscand.2 φBNo
addscand.3 φCNo
Assertion sltadd2d Could not format assertion : No typesetting found for |- ( ph -> ( A ( C +s A )

Proof

Step Hyp Ref Expression
1 addscand.1 φANo
2 addscand.2 φBNo
3 addscand.3 φCNo
4 sltadd2 Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( A ( C +s A ) ( A ( C +s A )
5 1 2 3 4 syl3anc Could not format ( ph -> ( A ( C +s A ) ( A ( C +s A )