Metamath Proof Explorer


Theorem sltadd2

Description: Addition to both sides of surreal less-than. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Assertion sltadd2 Could not format assertion : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( A ( C +s A )

Proof

Step Hyp Ref Expression
1 sleadd2 Could not format ( ( B e. No /\ A e. No /\ C e. No ) -> ( B <_s A <-> ( C +s B ) <_s ( C +s A ) ) ) : No typesetting found for |- ( ( B e. No /\ A e. No /\ C e. No ) -> ( B <_s A <-> ( C +s B ) <_s ( C +s A ) ) ) with typecode |-
2 1 3com12 Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( B <_s A <-> ( C +s B ) <_s ( C +s A ) ) ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( B <_s A <-> ( C +s B ) <_s ( C +s A ) ) ) with typecode |-
3 2 notbid Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( -. B <_s A <-> -. ( C +s B ) <_s ( C +s A ) ) ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( -. B <_s A <-> -. ( C +s B ) <_s ( C +s A ) ) ) with typecode |-
4 sltnle ANoBNoA<sB¬BsA
5 4 3adant3 ANoBNoCNoA<sB¬BsA
6 simp3 ANoBNoCNoCNo
7 simp1 ANoBNoCNoANo
8 6 7 addscld Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( C +s A ) e. No ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( C +s A ) e. No ) with typecode |-
9 simp2 ANoBNoCNoBNo
10 6 9 addscld Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( C +s B ) e. No ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( C +s B ) e. No ) with typecode |-
11 sltnle Could not format ( ( ( C +s A ) e. No /\ ( C +s B ) e. No ) -> ( ( C +s A ) -. ( C +s B ) <_s ( C +s A ) ) ) : No typesetting found for |- ( ( ( C +s A ) e. No /\ ( C +s B ) e. No ) -> ( ( C +s A ) -. ( C +s B ) <_s ( C +s A ) ) ) with typecode |-
12 8 10 11 syl2anc Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( C +s A ) -. ( C +s B ) <_s ( C +s A ) ) ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( C +s A ) -. ( C +s B ) <_s ( C +s A ) ) ) with typecode |-
13 3 5 12 3bitr4d Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( A ( C +s A ) ( A ( C +s A )