| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sleadd2 | ⊢ ( ( 𝐵  ∈   No   ∧  𝐴  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐵  ≤s  𝐴  ↔  ( 𝐶  +s  𝐵 )  ≤s  ( 𝐶  +s  𝐴 ) ) ) | 
						
							| 2 | 1 | 3com12 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐵  ≤s  𝐴  ↔  ( 𝐶  +s  𝐵 )  ≤s  ( 𝐶  +s  𝐴 ) ) ) | 
						
							| 3 | 2 | notbid | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( ¬  𝐵  ≤s  𝐴  ↔  ¬  ( 𝐶  +s  𝐵 )  ≤s  ( 𝐶  +s  𝐴 ) ) ) | 
						
							| 4 |  | sltnle | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝐴  <s  𝐵  ↔  ¬  𝐵  ≤s  𝐴 ) ) | 
						
							| 5 | 4 | 3adant3 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐴  <s  𝐵  ↔  ¬  𝐵  ≤s  𝐴 ) ) | 
						
							| 6 |  | simp3 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  𝐶  ∈   No  ) | 
						
							| 7 |  | simp1 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  𝐴  ∈   No  ) | 
						
							| 8 | 6 7 | addscld | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐶  +s  𝐴 )  ∈   No  ) | 
						
							| 9 |  | simp2 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  𝐵  ∈   No  ) | 
						
							| 10 | 6 9 | addscld | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐶  +s  𝐵 )  ∈   No  ) | 
						
							| 11 |  | sltnle | ⊢ ( ( ( 𝐶  +s  𝐴 )  ∈   No   ∧  ( 𝐶  +s  𝐵 )  ∈   No  )  →  ( ( 𝐶  +s  𝐴 )  <s  ( 𝐶  +s  𝐵 )  ↔  ¬  ( 𝐶  +s  𝐵 )  ≤s  ( 𝐶  +s  𝐴 ) ) ) | 
						
							| 12 | 8 10 11 | syl2anc | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( ( 𝐶  +s  𝐴 )  <s  ( 𝐶  +s  𝐵 )  ↔  ¬  ( 𝐶  +s  𝐵 )  ≤s  ( 𝐶  +s  𝐴 ) ) ) | 
						
							| 13 | 3 5 12 | 3bitr4d | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐴  <s  𝐵  ↔  ( 𝐶  +s  𝐴 )  <s  ( 𝐶  +s  𝐵 ) ) ) |