Metamath Proof Explorer


Theorem sleadd2

Description: Addition to both sides of surreal less-than or equal. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Assertion sleadd2 Could not format assertion : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( A <_s B <-> ( C +s A ) <_s ( C +s B ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 sleadd1 Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( A <_s B <-> ( A +s C ) <_s ( B +s C ) ) ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( A <_s B <-> ( A +s C ) <_s ( B +s C ) ) ) with typecode |-
2 addscom Could not format ( ( A e. No /\ C e. No ) -> ( A +s C ) = ( C +s A ) ) : No typesetting found for |- ( ( A e. No /\ C e. No ) -> ( A +s C ) = ( C +s A ) ) with typecode |-
3 2 3adant2 Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( A +s C ) = ( C +s A ) ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( A +s C ) = ( C +s A ) ) with typecode |-
4 addscom Could not format ( ( B e. No /\ C e. No ) -> ( B +s C ) = ( C +s B ) ) : No typesetting found for |- ( ( B e. No /\ C e. No ) -> ( B +s C ) = ( C +s B ) ) with typecode |-
5 4 3adant1 Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( B +s C ) = ( C +s B ) ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( B +s C ) = ( C +s B ) ) with typecode |-
6 3 5 breq12d Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A +s C ) <_s ( B +s C ) <-> ( C +s A ) <_s ( C +s B ) ) ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A +s C ) <_s ( B +s C ) <-> ( C +s A ) <_s ( C +s B ) ) ) with typecode |-
7 1 6 bitrd Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( A <_s B <-> ( C +s A ) <_s ( C +s B ) ) ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( A <_s B <-> ( C +s A ) <_s ( C +s B ) ) ) with typecode |-