| Step | Hyp | Ref | Expression | 
						
							| 1 |  | addsuniflem.1 | ⊢ ( 𝜑  →  𝐿  <<s  𝑅 ) | 
						
							| 2 |  | addsuniflem.2 | ⊢ ( 𝜑  →  𝑀  <<s  𝑆 ) | 
						
							| 3 |  | addsuniflem.3 | ⊢ ( 𝜑  →  𝐴  =  ( 𝐿  |s  𝑅 ) ) | 
						
							| 4 |  | addsuniflem.4 | ⊢ ( 𝜑  →  𝐵  =  ( 𝑀  |s  𝑆 ) ) | 
						
							| 5 | 1 | scutcld | ⊢ ( 𝜑  →  ( 𝐿  |s  𝑅 )  ∈   No  ) | 
						
							| 6 | 3 5 | eqeltrd | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
						
							| 7 | 2 | scutcld | ⊢ ( 𝜑  →  ( 𝑀  |s  𝑆 )  ∈   No  ) | 
						
							| 8 | 4 7 | eqeltrd | ⊢ ( 𝜑  →  𝐵  ∈   No  ) | 
						
							| 9 |  | addsval2 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝐴  +s  𝐵 )  =  ( ( { 𝑎  ∣  ∃ 𝑝  ∈  (  L  ‘ 𝐴 ) 𝑎  =  ( 𝑝  +s  𝐵 ) }  ∪  { 𝑏  ∣  ∃ 𝑞  ∈  (  L  ‘ 𝐵 ) 𝑏  =  ( 𝐴  +s  𝑞 ) } )  |s  ( { 𝑐  ∣  ∃ 𝑒  ∈  (  R  ‘ 𝐴 ) 𝑐  =  ( 𝑒  +s  𝐵 ) }  ∪  { 𝑑  ∣  ∃ 𝑓  ∈  (  R  ‘ 𝐵 ) 𝑑  =  ( 𝐴  +s  𝑓 ) } ) ) ) | 
						
							| 10 | 6 8 9 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  +s  𝐵 )  =  ( ( { 𝑎  ∣  ∃ 𝑝  ∈  (  L  ‘ 𝐴 ) 𝑎  =  ( 𝑝  +s  𝐵 ) }  ∪  { 𝑏  ∣  ∃ 𝑞  ∈  (  L  ‘ 𝐵 ) 𝑏  =  ( 𝐴  +s  𝑞 ) } )  |s  ( { 𝑐  ∣  ∃ 𝑒  ∈  (  R  ‘ 𝐴 ) 𝑐  =  ( 𝑒  +s  𝐵 ) }  ∪  { 𝑑  ∣  ∃ 𝑓  ∈  (  R  ‘ 𝐵 ) 𝑑  =  ( 𝐴  +s  𝑓 ) } ) ) ) | 
						
							| 11 | 6 8 | addscut | ⊢ ( 𝜑  →  ( ( 𝐴  +s  𝐵 )  ∈   No   ∧  ( { 𝑎  ∣  ∃ 𝑝  ∈  (  L  ‘ 𝐴 ) 𝑎  =  ( 𝑝  +s  𝐵 ) }  ∪  { 𝑏  ∣  ∃ 𝑞  ∈  (  L  ‘ 𝐵 ) 𝑏  =  ( 𝐴  +s  𝑞 ) } )  <<s  { ( 𝐴  +s  𝐵 ) }  ∧  { ( 𝐴  +s  𝐵 ) }  <<s  ( { 𝑐  ∣  ∃ 𝑒  ∈  (  R  ‘ 𝐴 ) 𝑐  =  ( 𝑒  +s  𝐵 ) }  ∪  { 𝑑  ∣  ∃ 𝑓  ∈  (  R  ‘ 𝐵 ) 𝑑  =  ( 𝐴  +s  𝑓 ) } ) ) ) | 
						
							| 12 | 11 | simp2d | ⊢ ( 𝜑  →  ( { 𝑎  ∣  ∃ 𝑝  ∈  (  L  ‘ 𝐴 ) 𝑎  =  ( 𝑝  +s  𝐵 ) }  ∪  { 𝑏  ∣  ∃ 𝑞  ∈  (  L  ‘ 𝐵 ) 𝑏  =  ( 𝐴  +s  𝑞 ) } )  <<s  { ( 𝐴  +s  𝐵 ) } ) | 
						
							| 13 | 11 | simp3d | ⊢ ( 𝜑  →  { ( 𝐴  +s  𝐵 ) }  <<s  ( { 𝑐  ∣  ∃ 𝑒  ∈  (  R  ‘ 𝐴 ) 𝑐  =  ( 𝑒  +s  𝐵 ) }  ∪  { 𝑑  ∣  ∃ 𝑓  ∈  (  R  ‘ 𝐵 ) 𝑑  =  ( 𝐴  +s  𝑓 ) } ) ) | 
						
							| 14 |  | ovex | ⊢ ( 𝐴  +s  𝐵 )  ∈  V | 
						
							| 15 | 14 | snnz | ⊢ { ( 𝐴  +s  𝐵 ) }  ≠  ∅ | 
						
							| 16 |  | sslttr | ⊢ ( ( ( { 𝑎  ∣  ∃ 𝑝  ∈  (  L  ‘ 𝐴 ) 𝑎  =  ( 𝑝  +s  𝐵 ) }  ∪  { 𝑏  ∣  ∃ 𝑞  ∈  (  L  ‘ 𝐵 ) 𝑏  =  ( 𝐴  +s  𝑞 ) } )  <<s  { ( 𝐴  +s  𝐵 ) }  ∧  { ( 𝐴  +s  𝐵 ) }  <<s  ( { 𝑐  ∣  ∃ 𝑒  ∈  (  R  ‘ 𝐴 ) 𝑐  =  ( 𝑒  +s  𝐵 ) }  ∪  { 𝑑  ∣  ∃ 𝑓  ∈  (  R  ‘ 𝐵 ) 𝑑  =  ( 𝐴  +s  𝑓 ) } )  ∧  { ( 𝐴  +s  𝐵 ) }  ≠  ∅ )  →  ( { 𝑎  ∣  ∃ 𝑝  ∈  (  L  ‘ 𝐴 ) 𝑎  =  ( 𝑝  +s  𝐵 ) }  ∪  { 𝑏  ∣  ∃ 𝑞  ∈  (  L  ‘ 𝐵 ) 𝑏  =  ( 𝐴  +s  𝑞 ) } )  <<s  ( { 𝑐  ∣  ∃ 𝑒  ∈  (  R  ‘ 𝐴 ) 𝑐  =  ( 𝑒  +s  𝐵 ) }  ∪  { 𝑑  ∣  ∃ 𝑓  ∈  (  R  ‘ 𝐵 ) 𝑑  =  ( 𝐴  +s  𝑓 ) } ) ) | 
						
							| 17 | 15 16 | mp3an3 | ⊢ ( ( ( { 𝑎  ∣  ∃ 𝑝  ∈  (  L  ‘ 𝐴 ) 𝑎  =  ( 𝑝  +s  𝐵 ) }  ∪  { 𝑏  ∣  ∃ 𝑞  ∈  (  L  ‘ 𝐵 ) 𝑏  =  ( 𝐴  +s  𝑞 ) } )  <<s  { ( 𝐴  +s  𝐵 ) }  ∧  { ( 𝐴  +s  𝐵 ) }  <<s  ( { 𝑐  ∣  ∃ 𝑒  ∈  (  R  ‘ 𝐴 ) 𝑐  =  ( 𝑒  +s  𝐵 ) }  ∪  { 𝑑  ∣  ∃ 𝑓  ∈  (  R  ‘ 𝐵 ) 𝑑  =  ( 𝐴  +s  𝑓 ) } ) )  →  ( { 𝑎  ∣  ∃ 𝑝  ∈  (  L  ‘ 𝐴 ) 𝑎  =  ( 𝑝  +s  𝐵 ) }  ∪  { 𝑏  ∣  ∃ 𝑞  ∈  (  L  ‘ 𝐵 ) 𝑏  =  ( 𝐴  +s  𝑞 ) } )  <<s  ( { 𝑐  ∣  ∃ 𝑒  ∈  (  R  ‘ 𝐴 ) 𝑐  =  ( 𝑒  +s  𝐵 ) }  ∪  { 𝑑  ∣  ∃ 𝑓  ∈  (  R  ‘ 𝐵 ) 𝑑  =  ( 𝐴  +s  𝑓 ) } ) ) | 
						
							| 18 | 12 13 17 | syl2anc | ⊢ ( 𝜑  →  ( { 𝑎  ∣  ∃ 𝑝  ∈  (  L  ‘ 𝐴 ) 𝑎  =  ( 𝑝  +s  𝐵 ) }  ∪  { 𝑏  ∣  ∃ 𝑞  ∈  (  L  ‘ 𝐵 ) 𝑏  =  ( 𝐴  +s  𝑞 ) } )  <<s  ( { 𝑐  ∣  ∃ 𝑒  ∈  (  R  ‘ 𝐴 ) 𝑐  =  ( 𝑒  +s  𝐵 ) }  ∪  { 𝑑  ∣  ∃ 𝑓  ∈  (  R  ‘ 𝐵 ) 𝑑  =  ( 𝐴  +s  𝑓 ) } ) ) | 
						
							| 19 | 1 3 | cofcutr1d | ⊢ ( 𝜑  →  ∀ 𝑝  ∈  (  L  ‘ 𝐴 ) ∃ 𝑙  ∈  𝐿 𝑝  ≤s  𝑙 ) | 
						
							| 20 |  | leftssno | ⊢ (  L  ‘ 𝐴 )  ⊆   No | 
						
							| 21 | 20 | sseli | ⊢ ( 𝑝  ∈  (  L  ‘ 𝐴 )  →  𝑝  ∈   No  ) | 
						
							| 22 | 21 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  (  L  ‘ 𝐴 ) )  ∧  𝑙  ∈  𝐿 )  →  𝑝  ∈   No  ) | 
						
							| 23 |  | ssltss1 | ⊢ ( 𝐿  <<s  𝑅  →  𝐿  ⊆   No  ) | 
						
							| 24 | 1 23 | syl | ⊢ ( 𝜑  →  𝐿  ⊆   No  ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  (  L  ‘ 𝐴 ) )  →  𝐿  ⊆   No  ) | 
						
							| 26 | 25 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  (  L  ‘ 𝐴 ) )  ∧  𝑙  ∈  𝐿 )  →  𝑙  ∈   No  ) | 
						
							| 27 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  (  L  ‘ 𝐴 ) )  ∧  𝑙  ∈  𝐿 )  →  𝐵  ∈   No  ) | 
						
							| 28 | 22 26 27 | sleadd1d | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  (  L  ‘ 𝐴 ) )  ∧  𝑙  ∈  𝐿 )  →  ( 𝑝  ≤s  𝑙  ↔  ( 𝑝  +s  𝐵 )  ≤s  ( 𝑙  +s  𝐵 ) ) ) | 
						
							| 29 | 28 | rexbidva | ⊢ ( ( 𝜑  ∧  𝑝  ∈  (  L  ‘ 𝐴 ) )  →  ( ∃ 𝑙  ∈  𝐿 𝑝  ≤s  𝑙  ↔  ∃ 𝑙  ∈  𝐿 ( 𝑝  +s  𝐵 )  ≤s  ( 𝑙  +s  𝐵 ) ) ) | 
						
							| 30 | 29 | ralbidva | ⊢ ( 𝜑  →  ( ∀ 𝑝  ∈  (  L  ‘ 𝐴 ) ∃ 𝑙  ∈  𝐿 𝑝  ≤s  𝑙  ↔  ∀ 𝑝  ∈  (  L  ‘ 𝐴 ) ∃ 𝑙  ∈  𝐿 ( 𝑝  +s  𝐵 )  ≤s  ( 𝑙  +s  𝐵 ) ) ) | 
						
							| 31 | 19 30 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑝  ∈  (  L  ‘ 𝐴 ) ∃ 𝑙  ∈  𝐿 ( 𝑝  +s  𝐵 )  ≤s  ( 𝑙  +s  𝐵 ) ) | 
						
							| 32 |  | eqeq1 | ⊢ ( 𝑦  =  𝑠  →  ( 𝑦  =  ( 𝑙  +s  𝐵 )  ↔  𝑠  =  ( 𝑙  +s  𝐵 ) ) ) | 
						
							| 33 | 32 | rexbidv | ⊢ ( 𝑦  =  𝑠  →  ( ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 )  ↔  ∃ 𝑙  ∈  𝐿 𝑠  =  ( 𝑙  +s  𝐵 ) ) ) | 
						
							| 34 | 33 | rexab | ⊢ ( ∃ 𝑠  ∈  { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) } ( 𝑝  +s  𝐵 )  ≤s  𝑠  ↔  ∃ 𝑠 ( ∃ 𝑙  ∈  𝐿 𝑠  =  ( 𝑙  +s  𝐵 )  ∧  ( 𝑝  +s  𝐵 )  ≤s  𝑠 ) ) | 
						
							| 35 |  | rexcom4 | ⊢ ( ∃ 𝑙  ∈  𝐿 ∃ 𝑠 ( 𝑠  =  ( 𝑙  +s  𝐵 )  ∧  ( 𝑝  +s  𝐵 )  ≤s  𝑠 )  ↔  ∃ 𝑠 ∃ 𝑙  ∈  𝐿 ( 𝑠  =  ( 𝑙  +s  𝐵 )  ∧  ( 𝑝  +s  𝐵 )  ≤s  𝑠 ) ) | 
						
							| 36 |  | ovex | ⊢ ( 𝑙  +s  𝐵 )  ∈  V | 
						
							| 37 |  | breq2 | ⊢ ( 𝑠  =  ( 𝑙  +s  𝐵 )  →  ( ( 𝑝  +s  𝐵 )  ≤s  𝑠  ↔  ( 𝑝  +s  𝐵 )  ≤s  ( 𝑙  +s  𝐵 ) ) ) | 
						
							| 38 | 36 37 | ceqsexv | ⊢ ( ∃ 𝑠 ( 𝑠  =  ( 𝑙  +s  𝐵 )  ∧  ( 𝑝  +s  𝐵 )  ≤s  𝑠 )  ↔  ( 𝑝  +s  𝐵 )  ≤s  ( 𝑙  +s  𝐵 ) ) | 
						
							| 39 | 38 | rexbii | ⊢ ( ∃ 𝑙  ∈  𝐿 ∃ 𝑠 ( 𝑠  =  ( 𝑙  +s  𝐵 )  ∧  ( 𝑝  +s  𝐵 )  ≤s  𝑠 )  ↔  ∃ 𝑙  ∈  𝐿 ( 𝑝  +s  𝐵 )  ≤s  ( 𝑙  +s  𝐵 ) ) | 
						
							| 40 |  | r19.41v | ⊢ ( ∃ 𝑙  ∈  𝐿 ( 𝑠  =  ( 𝑙  +s  𝐵 )  ∧  ( 𝑝  +s  𝐵 )  ≤s  𝑠 )  ↔  ( ∃ 𝑙  ∈  𝐿 𝑠  =  ( 𝑙  +s  𝐵 )  ∧  ( 𝑝  +s  𝐵 )  ≤s  𝑠 ) ) | 
						
							| 41 | 40 | exbii | ⊢ ( ∃ 𝑠 ∃ 𝑙  ∈  𝐿 ( 𝑠  =  ( 𝑙  +s  𝐵 )  ∧  ( 𝑝  +s  𝐵 )  ≤s  𝑠 )  ↔  ∃ 𝑠 ( ∃ 𝑙  ∈  𝐿 𝑠  =  ( 𝑙  +s  𝐵 )  ∧  ( 𝑝  +s  𝐵 )  ≤s  𝑠 ) ) | 
						
							| 42 | 35 39 41 | 3bitr3ri | ⊢ ( ∃ 𝑠 ( ∃ 𝑙  ∈  𝐿 𝑠  =  ( 𝑙  +s  𝐵 )  ∧  ( 𝑝  +s  𝐵 )  ≤s  𝑠 )  ↔  ∃ 𝑙  ∈  𝐿 ( 𝑝  +s  𝐵 )  ≤s  ( 𝑙  +s  𝐵 ) ) | 
						
							| 43 | 34 42 | bitri | ⊢ ( ∃ 𝑠  ∈  { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) } ( 𝑝  +s  𝐵 )  ≤s  𝑠  ↔  ∃ 𝑙  ∈  𝐿 ( 𝑝  +s  𝐵 )  ≤s  ( 𝑙  +s  𝐵 ) ) | 
						
							| 44 |  | ssun1 | ⊢ { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ⊆  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) | 
						
							| 45 |  | ssrexv | ⊢ ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ⊆  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } )  →  ( ∃ 𝑠  ∈  { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) } ( 𝑝  +s  𝐵 )  ≤s  𝑠  →  ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) ( 𝑝  +s  𝐵 )  ≤s  𝑠 ) ) | 
						
							| 46 | 44 45 | ax-mp | ⊢ ( ∃ 𝑠  ∈  { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) } ( 𝑝  +s  𝐵 )  ≤s  𝑠  →  ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) ( 𝑝  +s  𝐵 )  ≤s  𝑠 ) | 
						
							| 47 | 43 46 | sylbir | ⊢ ( ∃ 𝑙  ∈  𝐿 ( 𝑝  +s  𝐵 )  ≤s  ( 𝑙  +s  𝐵 )  →  ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) ( 𝑝  +s  𝐵 )  ≤s  𝑠 ) | 
						
							| 48 | 47 | ralimi | ⊢ ( ∀ 𝑝  ∈  (  L  ‘ 𝐴 ) ∃ 𝑙  ∈  𝐿 ( 𝑝  +s  𝐵 )  ≤s  ( 𝑙  +s  𝐵 )  →  ∀ 𝑝  ∈  (  L  ‘ 𝐴 ) ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) ( 𝑝  +s  𝐵 )  ≤s  𝑠 ) | 
						
							| 49 | 31 48 | syl | ⊢ ( 𝜑  →  ∀ 𝑝  ∈  (  L  ‘ 𝐴 ) ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) ( 𝑝  +s  𝐵 )  ≤s  𝑠 ) | 
						
							| 50 | 2 4 | cofcutr1d | ⊢ ( 𝜑  →  ∀ 𝑞  ∈  (  L  ‘ 𝐵 ) ∃ 𝑚  ∈  𝑀 𝑞  ≤s  𝑚 ) | 
						
							| 51 |  | leftssno | ⊢ (  L  ‘ 𝐵 )  ⊆   No | 
						
							| 52 | 51 | sseli | ⊢ ( 𝑞  ∈  (  L  ‘ 𝐵 )  →  𝑞  ∈   No  ) | 
						
							| 53 | 52 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑞  ∈  (  L  ‘ 𝐵 ) )  ∧  𝑚  ∈  𝑀 )  →  𝑞  ∈   No  ) | 
						
							| 54 |  | ssltss1 | ⊢ ( 𝑀  <<s  𝑆  →  𝑀  ⊆   No  ) | 
						
							| 55 | 2 54 | syl | ⊢ ( 𝜑  →  𝑀  ⊆   No  ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( 𝜑  ∧  𝑞  ∈  (  L  ‘ 𝐵 ) )  →  𝑀  ⊆   No  ) | 
						
							| 57 | 56 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑞  ∈  (  L  ‘ 𝐵 ) )  ∧  𝑚  ∈  𝑀 )  →  𝑚  ∈   No  ) | 
						
							| 58 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑞  ∈  (  L  ‘ 𝐵 ) )  ∧  𝑚  ∈  𝑀 )  →  𝐴  ∈   No  ) | 
						
							| 59 | 53 57 58 | sleadd2d | ⊢ ( ( ( 𝜑  ∧  𝑞  ∈  (  L  ‘ 𝐵 ) )  ∧  𝑚  ∈  𝑀 )  →  ( 𝑞  ≤s  𝑚  ↔  ( 𝐴  +s  𝑞 )  ≤s  ( 𝐴  +s  𝑚 ) ) ) | 
						
							| 60 | 59 | rexbidva | ⊢ ( ( 𝜑  ∧  𝑞  ∈  (  L  ‘ 𝐵 ) )  →  ( ∃ 𝑚  ∈  𝑀 𝑞  ≤s  𝑚  ↔  ∃ 𝑚  ∈  𝑀 ( 𝐴  +s  𝑞 )  ≤s  ( 𝐴  +s  𝑚 ) ) ) | 
						
							| 61 | 60 | ralbidva | ⊢ ( 𝜑  →  ( ∀ 𝑞  ∈  (  L  ‘ 𝐵 ) ∃ 𝑚  ∈  𝑀 𝑞  ≤s  𝑚  ↔  ∀ 𝑞  ∈  (  L  ‘ 𝐵 ) ∃ 𝑚  ∈  𝑀 ( 𝐴  +s  𝑞 )  ≤s  ( 𝐴  +s  𝑚 ) ) ) | 
						
							| 62 | 50 61 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑞  ∈  (  L  ‘ 𝐵 ) ∃ 𝑚  ∈  𝑀 ( 𝐴  +s  𝑞 )  ≤s  ( 𝐴  +s  𝑚 ) ) | 
						
							| 63 |  | eqeq1 | ⊢ ( 𝑧  =  𝑠  →  ( 𝑧  =  ( 𝐴  +s  𝑚 )  ↔  𝑠  =  ( 𝐴  +s  𝑚 ) ) ) | 
						
							| 64 | 63 | rexbidv | ⊢ ( 𝑧  =  𝑠  →  ( ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 )  ↔  ∃ 𝑚  ∈  𝑀 𝑠  =  ( 𝐴  +s  𝑚 ) ) ) | 
						
							| 65 | 64 | rexab | ⊢ ( ∃ 𝑠  ∈  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ( 𝐴  +s  𝑞 )  ≤s  𝑠  ↔  ∃ 𝑠 ( ∃ 𝑚  ∈  𝑀 𝑠  =  ( 𝐴  +s  𝑚 )  ∧  ( 𝐴  +s  𝑞 )  ≤s  𝑠 ) ) | 
						
							| 66 |  | rexcom4 | ⊢ ( ∃ 𝑚  ∈  𝑀 ∃ 𝑠 ( 𝑠  =  ( 𝐴  +s  𝑚 )  ∧  ( 𝐴  +s  𝑞 )  ≤s  𝑠 )  ↔  ∃ 𝑠 ∃ 𝑚  ∈  𝑀 ( 𝑠  =  ( 𝐴  +s  𝑚 )  ∧  ( 𝐴  +s  𝑞 )  ≤s  𝑠 ) ) | 
						
							| 67 |  | ovex | ⊢ ( 𝐴  +s  𝑚 )  ∈  V | 
						
							| 68 |  | breq2 | ⊢ ( 𝑠  =  ( 𝐴  +s  𝑚 )  →  ( ( 𝐴  +s  𝑞 )  ≤s  𝑠  ↔  ( 𝐴  +s  𝑞 )  ≤s  ( 𝐴  +s  𝑚 ) ) ) | 
						
							| 69 | 67 68 | ceqsexv | ⊢ ( ∃ 𝑠 ( 𝑠  =  ( 𝐴  +s  𝑚 )  ∧  ( 𝐴  +s  𝑞 )  ≤s  𝑠 )  ↔  ( 𝐴  +s  𝑞 )  ≤s  ( 𝐴  +s  𝑚 ) ) | 
						
							| 70 | 69 | rexbii | ⊢ ( ∃ 𝑚  ∈  𝑀 ∃ 𝑠 ( 𝑠  =  ( 𝐴  +s  𝑚 )  ∧  ( 𝐴  +s  𝑞 )  ≤s  𝑠 )  ↔  ∃ 𝑚  ∈  𝑀 ( 𝐴  +s  𝑞 )  ≤s  ( 𝐴  +s  𝑚 ) ) | 
						
							| 71 |  | r19.41v | ⊢ ( ∃ 𝑚  ∈  𝑀 ( 𝑠  =  ( 𝐴  +s  𝑚 )  ∧  ( 𝐴  +s  𝑞 )  ≤s  𝑠 )  ↔  ( ∃ 𝑚  ∈  𝑀 𝑠  =  ( 𝐴  +s  𝑚 )  ∧  ( 𝐴  +s  𝑞 )  ≤s  𝑠 ) ) | 
						
							| 72 | 71 | exbii | ⊢ ( ∃ 𝑠 ∃ 𝑚  ∈  𝑀 ( 𝑠  =  ( 𝐴  +s  𝑚 )  ∧  ( 𝐴  +s  𝑞 )  ≤s  𝑠 )  ↔  ∃ 𝑠 ( ∃ 𝑚  ∈  𝑀 𝑠  =  ( 𝐴  +s  𝑚 )  ∧  ( 𝐴  +s  𝑞 )  ≤s  𝑠 ) ) | 
						
							| 73 | 66 70 72 | 3bitr3ri | ⊢ ( ∃ 𝑠 ( ∃ 𝑚  ∈  𝑀 𝑠  =  ( 𝐴  +s  𝑚 )  ∧  ( 𝐴  +s  𝑞 )  ≤s  𝑠 )  ↔  ∃ 𝑚  ∈  𝑀 ( 𝐴  +s  𝑞 )  ≤s  ( 𝐴  +s  𝑚 ) ) | 
						
							| 74 | 65 73 | bitri | ⊢ ( ∃ 𝑠  ∈  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ( 𝐴  +s  𝑞 )  ≤s  𝑠  ↔  ∃ 𝑚  ∈  𝑀 ( 𝐴  +s  𝑞 )  ≤s  ( 𝐴  +s  𝑚 ) ) | 
						
							| 75 |  | ssun2 | ⊢ { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) }  ⊆  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) | 
						
							| 76 |  | ssrexv | ⊢ ( { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) }  ⊆  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } )  →  ( ∃ 𝑠  ∈  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ( 𝐴  +s  𝑞 )  ≤s  𝑠  →  ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) ( 𝐴  +s  𝑞 )  ≤s  𝑠 ) ) | 
						
							| 77 | 75 76 | ax-mp | ⊢ ( ∃ 𝑠  ∈  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ( 𝐴  +s  𝑞 )  ≤s  𝑠  →  ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) ( 𝐴  +s  𝑞 )  ≤s  𝑠 ) | 
						
							| 78 | 74 77 | sylbir | ⊢ ( ∃ 𝑚  ∈  𝑀 ( 𝐴  +s  𝑞 )  ≤s  ( 𝐴  +s  𝑚 )  →  ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) ( 𝐴  +s  𝑞 )  ≤s  𝑠 ) | 
						
							| 79 | 78 | ralimi | ⊢ ( ∀ 𝑞  ∈  (  L  ‘ 𝐵 ) ∃ 𝑚  ∈  𝑀 ( 𝐴  +s  𝑞 )  ≤s  ( 𝐴  +s  𝑚 )  →  ∀ 𝑞  ∈  (  L  ‘ 𝐵 ) ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) ( 𝐴  +s  𝑞 )  ≤s  𝑠 ) | 
						
							| 80 | 62 79 | syl | ⊢ ( 𝜑  →  ∀ 𝑞  ∈  (  L  ‘ 𝐵 ) ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) ( 𝐴  +s  𝑞 )  ≤s  𝑠 ) | 
						
							| 81 |  | ralunb | ⊢ ( ∀ 𝑟  ∈  ( { 𝑎  ∣  ∃ 𝑝  ∈  (  L  ‘ 𝐴 ) 𝑎  =  ( 𝑝  +s  𝐵 ) }  ∪  { 𝑏  ∣  ∃ 𝑞  ∈  (  L  ‘ 𝐵 ) 𝑏  =  ( 𝐴  +s  𝑞 ) } ) ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) 𝑟  ≤s  𝑠  ↔  ( ∀ 𝑟  ∈  { 𝑎  ∣  ∃ 𝑝  ∈  (  L  ‘ 𝐴 ) 𝑎  =  ( 𝑝  +s  𝐵 ) } ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) 𝑟  ≤s  𝑠  ∧  ∀ 𝑟  ∈  { 𝑏  ∣  ∃ 𝑞  ∈  (  L  ‘ 𝐵 ) 𝑏  =  ( 𝐴  +s  𝑞 ) } ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) 𝑟  ≤s  𝑠 ) ) | 
						
							| 82 |  | eqeq1 | ⊢ ( 𝑎  =  𝑟  →  ( 𝑎  =  ( 𝑝  +s  𝐵 )  ↔  𝑟  =  ( 𝑝  +s  𝐵 ) ) ) | 
						
							| 83 | 82 | rexbidv | ⊢ ( 𝑎  =  𝑟  →  ( ∃ 𝑝  ∈  (  L  ‘ 𝐴 ) 𝑎  =  ( 𝑝  +s  𝐵 )  ↔  ∃ 𝑝  ∈  (  L  ‘ 𝐴 ) 𝑟  =  ( 𝑝  +s  𝐵 ) ) ) | 
						
							| 84 | 83 | ralab | ⊢ ( ∀ 𝑟  ∈  { 𝑎  ∣  ∃ 𝑝  ∈  (  L  ‘ 𝐴 ) 𝑎  =  ( 𝑝  +s  𝐵 ) } ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) 𝑟  ≤s  𝑠  ↔  ∀ 𝑟 ( ∃ 𝑝  ∈  (  L  ‘ 𝐴 ) 𝑟  =  ( 𝑝  +s  𝐵 )  →  ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) 𝑟  ≤s  𝑠 ) ) | 
						
							| 85 |  | ralcom4 | ⊢ ( ∀ 𝑝  ∈  (  L  ‘ 𝐴 ) ∀ 𝑟 ( 𝑟  =  ( 𝑝  +s  𝐵 )  →  ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) 𝑟  ≤s  𝑠 )  ↔  ∀ 𝑟 ∀ 𝑝  ∈  (  L  ‘ 𝐴 ) ( 𝑟  =  ( 𝑝  +s  𝐵 )  →  ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) 𝑟  ≤s  𝑠 ) ) | 
						
							| 86 |  | ovex | ⊢ ( 𝑝  +s  𝐵 )  ∈  V | 
						
							| 87 |  | breq1 | ⊢ ( 𝑟  =  ( 𝑝  +s  𝐵 )  →  ( 𝑟  ≤s  𝑠  ↔  ( 𝑝  +s  𝐵 )  ≤s  𝑠 ) ) | 
						
							| 88 | 87 | rexbidv | ⊢ ( 𝑟  =  ( 𝑝  +s  𝐵 )  →  ( ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) 𝑟  ≤s  𝑠  ↔  ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) ( 𝑝  +s  𝐵 )  ≤s  𝑠 ) ) | 
						
							| 89 | 86 88 | ceqsalv | ⊢ ( ∀ 𝑟 ( 𝑟  =  ( 𝑝  +s  𝐵 )  →  ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) 𝑟  ≤s  𝑠 )  ↔  ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) ( 𝑝  +s  𝐵 )  ≤s  𝑠 ) | 
						
							| 90 | 89 | ralbii | ⊢ ( ∀ 𝑝  ∈  (  L  ‘ 𝐴 ) ∀ 𝑟 ( 𝑟  =  ( 𝑝  +s  𝐵 )  →  ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) 𝑟  ≤s  𝑠 )  ↔  ∀ 𝑝  ∈  (  L  ‘ 𝐴 ) ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) ( 𝑝  +s  𝐵 )  ≤s  𝑠 ) | 
						
							| 91 |  | r19.23v | ⊢ ( ∀ 𝑝  ∈  (  L  ‘ 𝐴 ) ( 𝑟  =  ( 𝑝  +s  𝐵 )  →  ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) 𝑟  ≤s  𝑠 )  ↔  ( ∃ 𝑝  ∈  (  L  ‘ 𝐴 ) 𝑟  =  ( 𝑝  +s  𝐵 )  →  ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) 𝑟  ≤s  𝑠 ) ) | 
						
							| 92 | 91 | albii | ⊢ ( ∀ 𝑟 ∀ 𝑝  ∈  (  L  ‘ 𝐴 ) ( 𝑟  =  ( 𝑝  +s  𝐵 )  →  ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) 𝑟  ≤s  𝑠 )  ↔  ∀ 𝑟 ( ∃ 𝑝  ∈  (  L  ‘ 𝐴 ) 𝑟  =  ( 𝑝  +s  𝐵 )  →  ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) 𝑟  ≤s  𝑠 ) ) | 
						
							| 93 | 85 90 92 | 3bitr3ri | ⊢ ( ∀ 𝑟 ( ∃ 𝑝  ∈  (  L  ‘ 𝐴 ) 𝑟  =  ( 𝑝  +s  𝐵 )  →  ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) 𝑟  ≤s  𝑠 )  ↔  ∀ 𝑝  ∈  (  L  ‘ 𝐴 ) ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) ( 𝑝  +s  𝐵 )  ≤s  𝑠 ) | 
						
							| 94 | 84 93 | bitri | ⊢ ( ∀ 𝑟  ∈  { 𝑎  ∣  ∃ 𝑝  ∈  (  L  ‘ 𝐴 ) 𝑎  =  ( 𝑝  +s  𝐵 ) } ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) 𝑟  ≤s  𝑠  ↔  ∀ 𝑝  ∈  (  L  ‘ 𝐴 ) ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) ( 𝑝  +s  𝐵 )  ≤s  𝑠 ) | 
						
							| 95 |  | eqeq1 | ⊢ ( 𝑏  =  𝑟  →  ( 𝑏  =  ( 𝐴  +s  𝑞 )  ↔  𝑟  =  ( 𝐴  +s  𝑞 ) ) ) | 
						
							| 96 | 95 | rexbidv | ⊢ ( 𝑏  =  𝑟  →  ( ∃ 𝑞  ∈  (  L  ‘ 𝐵 ) 𝑏  =  ( 𝐴  +s  𝑞 )  ↔  ∃ 𝑞  ∈  (  L  ‘ 𝐵 ) 𝑟  =  ( 𝐴  +s  𝑞 ) ) ) | 
						
							| 97 | 96 | ralab | ⊢ ( ∀ 𝑟  ∈  { 𝑏  ∣  ∃ 𝑞  ∈  (  L  ‘ 𝐵 ) 𝑏  =  ( 𝐴  +s  𝑞 ) } ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) 𝑟  ≤s  𝑠  ↔  ∀ 𝑟 ( ∃ 𝑞  ∈  (  L  ‘ 𝐵 ) 𝑟  =  ( 𝐴  +s  𝑞 )  →  ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) 𝑟  ≤s  𝑠 ) ) | 
						
							| 98 |  | ralcom4 | ⊢ ( ∀ 𝑞  ∈  (  L  ‘ 𝐵 ) ∀ 𝑟 ( 𝑟  =  ( 𝐴  +s  𝑞 )  →  ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) 𝑟  ≤s  𝑠 )  ↔  ∀ 𝑟 ∀ 𝑞  ∈  (  L  ‘ 𝐵 ) ( 𝑟  =  ( 𝐴  +s  𝑞 )  →  ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) 𝑟  ≤s  𝑠 ) ) | 
						
							| 99 |  | ovex | ⊢ ( 𝐴  +s  𝑞 )  ∈  V | 
						
							| 100 |  | breq1 | ⊢ ( 𝑟  =  ( 𝐴  +s  𝑞 )  →  ( 𝑟  ≤s  𝑠  ↔  ( 𝐴  +s  𝑞 )  ≤s  𝑠 ) ) | 
						
							| 101 | 100 | rexbidv | ⊢ ( 𝑟  =  ( 𝐴  +s  𝑞 )  →  ( ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) 𝑟  ≤s  𝑠  ↔  ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) ( 𝐴  +s  𝑞 )  ≤s  𝑠 ) ) | 
						
							| 102 | 99 101 | ceqsalv | ⊢ ( ∀ 𝑟 ( 𝑟  =  ( 𝐴  +s  𝑞 )  →  ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) 𝑟  ≤s  𝑠 )  ↔  ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) ( 𝐴  +s  𝑞 )  ≤s  𝑠 ) | 
						
							| 103 | 102 | ralbii | ⊢ ( ∀ 𝑞  ∈  (  L  ‘ 𝐵 ) ∀ 𝑟 ( 𝑟  =  ( 𝐴  +s  𝑞 )  →  ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) 𝑟  ≤s  𝑠 )  ↔  ∀ 𝑞  ∈  (  L  ‘ 𝐵 ) ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) ( 𝐴  +s  𝑞 )  ≤s  𝑠 ) | 
						
							| 104 |  | r19.23v | ⊢ ( ∀ 𝑞  ∈  (  L  ‘ 𝐵 ) ( 𝑟  =  ( 𝐴  +s  𝑞 )  →  ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) 𝑟  ≤s  𝑠 )  ↔  ( ∃ 𝑞  ∈  (  L  ‘ 𝐵 ) 𝑟  =  ( 𝐴  +s  𝑞 )  →  ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) 𝑟  ≤s  𝑠 ) ) | 
						
							| 105 | 104 | albii | ⊢ ( ∀ 𝑟 ∀ 𝑞  ∈  (  L  ‘ 𝐵 ) ( 𝑟  =  ( 𝐴  +s  𝑞 )  →  ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) 𝑟  ≤s  𝑠 )  ↔  ∀ 𝑟 ( ∃ 𝑞  ∈  (  L  ‘ 𝐵 ) 𝑟  =  ( 𝐴  +s  𝑞 )  →  ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) 𝑟  ≤s  𝑠 ) ) | 
						
							| 106 | 98 103 105 | 3bitr3ri | ⊢ ( ∀ 𝑟 ( ∃ 𝑞  ∈  (  L  ‘ 𝐵 ) 𝑟  =  ( 𝐴  +s  𝑞 )  →  ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) 𝑟  ≤s  𝑠 )  ↔  ∀ 𝑞  ∈  (  L  ‘ 𝐵 ) ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) ( 𝐴  +s  𝑞 )  ≤s  𝑠 ) | 
						
							| 107 | 97 106 | bitri | ⊢ ( ∀ 𝑟  ∈  { 𝑏  ∣  ∃ 𝑞  ∈  (  L  ‘ 𝐵 ) 𝑏  =  ( 𝐴  +s  𝑞 ) } ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) 𝑟  ≤s  𝑠  ↔  ∀ 𝑞  ∈  (  L  ‘ 𝐵 ) ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) ( 𝐴  +s  𝑞 )  ≤s  𝑠 ) | 
						
							| 108 | 94 107 | anbi12i | ⊢ ( ( ∀ 𝑟  ∈  { 𝑎  ∣  ∃ 𝑝  ∈  (  L  ‘ 𝐴 ) 𝑎  =  ( 𝑝  +s  𝐵 ) } ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) 𝑟  ≤s  𝑠  ∧  ∀ 𝑟  ∈  { 𝑏  ∣  ∃ 𝑞  ∈  (  L  ‘ 𝐵 ) 𝑏  =  ( 𝐴  +s  𝑞 ) } ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) 𝑟  ≤s  𝑠 )  ↔  ( ∀ 𝑝  ∈  (  L  ‘ 𝐴 ) ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) ( 𝑝  +s  𝐵 )  ≤s  𝑠  ∧  ∀ 𝑞  ∈  (  L  ‘ 𝐵 ) ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) ( 𝐴  +s  𝑞 )  ≤s  𝑠 ) ) | 
						
							| 109 | 81 108 | bitri | ⊢ ( ∀ 𝑟  ∈  ( { 𝑎  ∣  ∃ 𝑝  ∈  (  L  ‘ 𝐴 ) 𝑎  =  ( 𝑝  +s  𝐵 ) }  ∪  { 𝑏  ∣  ∃ 𝑞  ∈  (  L  ‘ 𝐵 ) 𝑏  =  ( 𝐴  +s  𝑞 ) } ) ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) 𝑟  ≤s  𝑠  ↔  ( ∀ 𝑝  ∈  (  L  ‘ 𝐴 ) ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) ( 𝑝  +s  𝐵 )  ≤s  𝑠  ∧  ∀ 𝑞  ∈  (  L  ‘ 𝐵 ) ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) ( 𝐴  +s  𝑞 )  ≤s  𝑠 ) ) | 
						
							| 110 | 49 80 109 | sylanbrc | ⊢ ( 𝜑  →  ∀ 𝑟  ∈  ( { 𝑎  ∣  ∃ 𝑝  ∈  (  L  ‘ 𝐴 ) 𝑎  =  ( 𝑝  +s  𝐵 ) }  ∪  { 𝑏  ∣  ∃ 𝑞  ∈  (  L  ‘ 𝐵 ) 𝑏  =  ( 𝐴  +s  𝑞 ) } ) ∃ 𝑠  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) 𝑟  ≤s  𝑠 ) | 
						
							| 111 | 1 3 | cofcutr2d | ⊢ ( 𝜑  →  ∀ 𝑒  ∈  (  R  ‘ 𝐴 ) ∃ 𝑟  ∈  𝑅 𝑟  ≤s  𝑒 ) | 
						
							| 112 |  | ssltss2 | ⊢ ( 𝐿  <<s  𝑅  →  𝑅  ⊆   No  ) | 
						
							| 113 | 1 112 | syl | ⊢ ( 𝜑  →  𝑅  ⊆   No  ) | 
						
							| 114 | 113 | adantr | ⊢ ( ( 𝜑  ∧  𝑒  ∈  (  R  ‘ 𝐴 ) )  →  𝑅  ⊆   No  ) | 
						
							| 115 | 114 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  (  R  ‘ 𝐴 ) )  ∧  𝑟  ∈  𝑅 )  →  𝑟  ∈   No  ) | 
						
							| 116 |  | rightssno | ⊢ (  R  ‘ 𝐴 )  ⊆   No | 
						
							| 117 | 116 | sseli | ⊢ ( 𝑒  ∈  (  R  ‘ 𝐴 )  →  𝑒  ∈   No  ) | 
						
							| 118 | 117 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  (  R  ‘ 𝐴 ) )  ∧  𝑟  ∈  𝑅 )  →  𝑒  ∈   No  ) | 
						
							| 119 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  (  R  ‘ 𝐴 ) )  ∧  𝑟  ∈  𝑅 )  →  𝐵  ∈   No  ) | 
						
							| 120 | 115 118 119 | sleadd1d | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  (  R  ‘ 𝐴 ) )  ∧  𝑟  ∈  𝑅 )  →  ( 𝑟  ≤s  𝑒  ↔  ( 𝑟  +s  𝐵 )  ≤s  ( 𝑒  +s  𝐵 ) ) ) | 
						
							| 121 | 120 | rexbidva | ⊢ ( ( 𝜑  ∧  𝑒  ∈  (  R  ‘ 𝐴 ) )  →  ( ∃ 𝑟  ∈  𝑅 𝑟  ≤s  𝑒  ↔  ∃ 𝑟  ∈  𝑅 ( 𝑟  +s  𝐵 )  ≤s  ( 𝑒  +s  𝐵 ) ) ) | 
						
							| 122 | 121 | ralbidva | ⊢ ( 𝜑  →  ( ∀ 𝑒  ∈  (  R  ‘ 𝐴 ) ∃ 𝑟  ∈  𝑅 𝑟  ≤s  𝑒  ↔  ∀ 𝑒  ∈  (  R  ‘ 𝐴 ) ∃ 𝑟  ∈  𝑅 ( 𝑟  +s  𝐵 )  ≤s  ( 𝑒  +s  𝐵 ) ) ) | 
						
							| 123 | 111 122 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑒  ∈  (  R  ‘ 𝐴 ) ∃ 𝑟  ∈  𝑅 ( 𝑟  +s  𝐵 )  ≤s  ( 𝑒  +s  𝐵 ) ) | 
						
							| 124 |  | eqeq1 | ⊢ ( 𝑤  =  𝑏  →  ( 𝑤  =  ( 𝑟  +s  𝐵 )  ↔  𝑏  =  ( 𝑟  +s  𝐵 ) ) ) | 
						
							| 125 | 124 | rexbidv | ⊢ ( 𝑤  =  𝑏  →  ( ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 )  ↔  ∃ 𝑟  ∈  𝑅 𝑏  =  ( 𝑟  +s  𝐵 ) ) ) | 
						
							| 126 | 125 | rexab | ⊢ ( ∃ 𝑏  ∈  { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) } 𝑏  ≤s  ( 𝑒  +s  𝐵 )  ↔  ∃ 𝑏 ( ∃ 𝑟  ∈  𝑅 𝑏  =  ( 𝑟  +s  𝐵 )  ∧  𝑏  ≤s  ( 𝑒  +s  𝐵 ) ) ) | 
						
							| 127 |  | rexcom4 | ⊢ ( ∃ 𝑟  ∈  𝑅 ∃ 𝑏 ( 𝑏  =  ( 𝑟  +s  𝐵 )  ∧  𝑏  ≤s  ( 𝑒  +s  𝐵 ) )  ↔  ∃ 𝑏 ∃ 𝑟  ∈  𝑅 ( 𝑏  =  ( 𝑟  +s  𝐵 )  ∧  𝑏  ≤s  ( 𝑒  +s  𝐵 ) ) ) | 
						
							| 128 |  | ovex | ⊢ ( 𝑟  +s  𝐵 )  ∈  V | 
						
							| 129 |  | breq1 | ⊢ ( 𝑏  =  ( 𝑟  +s  𝐵 )  →  ( 𝑏  ≤s  ( 𝑒  +s  𝐵 )  ↔  ( 𝑟  +s  𝐵 )  ≤s  ( 𝑒  +s  𝐵 ) ) ) | 
						
							| 130 | 128 129 | ceqsexv | ⊢ ( ∃ 𝑏 ( 𝑏  =  ( 𝑟  +s  𝐵 )  ∧  𝑏  ≤s  ( 𝑒  +s  𝐵 ) )  ↔  ( 𝑟  +s  𝐵 )  ≤s  ( 𝑒  +s  𝐵 ) ) | 
						
							| 131 | 130 | rexbii | ⊢ ( ∃ 𝑟  ∈  𝑅 ∃ 𝑏 ( 𝑏  =  ( 𝑟  +s  𝐵 )  ∧  𝑏  ≤s  ( 𝑒  +s  𝐵 ) )  ↔  ∃ 𝑟  ∈  𝑅 ( 𝑟  +s  𝐵 )  ≤s  ( 𝑒  +s  𝐵 ) ) | 
						
							| 132 |  | r19.41v | ⊢ ( ∃ 𝑟  ∈  𝑅 ( 𝑏  =  ( 𝑟  +s  𝐵 )  ∧  𝑏  ≤s  ( 𝑒  +s  𝐵 ) )  ↔  ( ∃ 𝑟  ∈  𝑅 𝑏  =  ( 𝑟  +s  𝐵 )  ∧  𝑏  ≤s  ( 𝑒  +s  𝐵 ) ) ) | 
						
							| 133 | 132 | exbii | ⊢ ( ∃ 𝑏 ∃ 𝑟  ∈  𝑅 ( 𝑏  =  ( 𝑟  +s  𝐵 )  ∧  𝑏  ≤s  ( 𝑒  +s  𝐵 ) )  ↔  ∃ 𝑏 ( ∃ 𝑟  ∈  𝑅 𝑏  =  ( 𝑟  +s  𝐵 )  ∧  𝑏  ≤s  ( 𝑒  +s  𝐵 ) ) ) | 
						
							| 134 | 127 131 133 | 3bitr3ri | ⊢ ( ∃ 𝑏 ( ∃ 𝑟  ∈  𝑅 𝑏  =  ( 𝑟  +s  𝐵 )  ∧  𝑏  ≤s  ( 𝑒  +s  𝐵 ) )  ↔  ∃ 𝑟  ∈  𝑅 ( 𝑟  +s  𝐵 )  ≤s  ( 𝑒  +s  𝐵 ) ) | 
						
							| 135 | 126 134 | bitri | ⊢ ( ∃ 𝑏  ∈  { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) } 𝑏  ≤s  ( 𝑒  +s  𝐵 )  ↔  ∃ 𝑟  ∈  𝑅 ( 𝑟  +s  𝐵 )  ≤s  ( 𝑒  +s  𝐵 ) ) | 
						
							| 136 |  | ssun1 | ⊢ { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ⊆  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) | 
						
							| 137 |  | ssrexv | ⊢ ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ⊆  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } )  →  ( ∃ 𝑏  ∈  { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) } 𝑏  ≤s  ( 𝑒  +s  𝐵 )  →  ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  ( 𝑒  +s  𝐵 ) ) ) | 
						
							| 138 | 136 137 | ax-mp | ⊢ ( ∃ 𝑏  ∈  { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) } 𝑏  ≤s  ( 𝑒  +s  𝐵 )  →  ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  ( 𝑒  +s  𝐵 ) ) | 
						
							| 139 | 135 138 | sylbir | ⊢ ( ∃ 𝑟  ∈  𝑅 ( 𝑟  +s  𝐵 )  ≤s  ( 𝑒  +s  𝐵 )  →  ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  ( 𝑒  +s  𝐵 ) ) | 
						
							| 140 | 139 | ralimi | ⊢ ( ∀ 𝑒  ∈  (  R  ‘ 𝐴 ) ∃ 𝑟  ∈  𝑅 ( 𝑟  +s  𝐵 )  ≤s  ( 𝑒  +s  𝐵 )  →  ∀ 𝑒  ∈  (  R  ‘ 𝐴 ) ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  ( 𝑒  +s  𝐵 ) ) | 
						
							| 141 | 123 140 | syl | ⊢ ( 𝜑  →  ∀ 𝑒  ∈  (  R  ‘ 𝐴 ) ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  ( 𝑒  +s  𝐵 ) ) | 
						
							| 142 | 2 4 | cofcutr2d | ⊢ ( 𝜑  →  ∀ 𝑓  ∈  (  R  ‘ 𝐵 ) ∃ 𝑠  ∈  𝑆 𝑠  ≤s  𝑓 ) | 
						
							| 143 |  | ssltss2 | ⊢ ( 𝑀  <<s  𝑆  →  𝑆  ⊆   No  ) | 
						
							| 144 | 2 143 | syl | ⊢ ( 𝜑  →  𝑆  ⊆   No  ) | 
						
							| 145 | 144 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  (  R  ‘ 𝐵 ) )  →  𝑆  ⊆   No  ) | 
						
							| 146 | 145 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  (  R  ‘ 𝐵 ) )  ∧  𝑠  ∈  𝑆 )  →  𝑠  ∈   No  ) | 
						
							| 147 |  | rightssno | ⊢ (  R  ‘ 𝐵 )  ⊆   No | 
						
							| 148 | 147 | sseli | ⊢ ( 𝑓  ∈  (  R  ‘ 𝐵 )  →  𝑓  ∈   No  ) | 
						
							| 149 | 148 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  (  R  ‘ 𝐵 ) )  ∧  𝑠  ∈  𝑆 )  →  𝑓  ∈   No  ) | 
						
							| 150 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  (  R  ‘ 𝐵 ) )  ∧  𝑠  ∈  𝑆 )  →  𝐴  ∈   No  ) | 
						
							| 151 | 146 149 150 | sleadd2d | ⊢ ( ( ( 𝜑  ∧  𝑓  ∈  (  R  ‘ 𝐵 ) )  ∧  𝑠  ∈  𝑆 )  →  ( 𝑠  ≤s  𝑓  ↔  ( 𝐴  +s  𝑠 )  ≤s  ( 𝐴  +s  𝑓 ) ) ) | 
						
							| 152 | 151 | rexbidva | ⊢ ( ( 𝜑  ∧  𝑓  ∈  (  R  ‘ 𝐵 ) )  →  ( ∃ 𝑠  ∈  𝑆 𝑠  ≤s  𝑓  ↔  ∃ 𝑠  ∈  𝑆 ( 𝐴  +s  𝑠 )  ≤s  ( 𝐴  +s  𝑓 ) ) ) | 
						
							| 153 | 152 | ralbidva | ⊢ ( 𝜑  →  ( ∀ 𝑓  ∈  (  R  ‘ 𝐵 ) ∃ 𝑠  ∈  𝑆 𝑠  ≤s  𝑓  ↔  ∀ 𝑓  ∈  (  R  ‘ 𝐵 ) ∃ 𝑠  ∈  𝑆 ( 𝐴  +s  𝑠 )  ≤s  ( 𝐴  +s  𝑓 ) ) ) | 
						
							| 154 | 142 153 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑓  ∈  (  R  ‘ 𝐵 ) ∃ 𝑠  ∈  𝑆 ( 𝐴  +s  𝑠 )  ≤s  ( 𝐴  +s  𝑓 ) ) | 
						
							| 155 |  | eqeq1 | ⊢ ( 𝑡  =  𝑏  →  ( 𝑡  =  ( 𝐴  +s  𝑠 )  ↔  𝑏  =  ( 𝐴  +s  𝑠 ) ) ) | 
						
							| 156 | 155 | rexbidv | ⊢ ( 𝑡  =  𝑏  →  ( ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 )  ↔  ∃ 𝑠  ∈  𝑆 𝑏  =  ( 𝐴  +s  𝑠 ) ) ) | 
						
							| 157 | 156 | rexab | ⊢ ( ∃ 𝑏  ∈  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } 𝑏  ≤s  ( 𝐴  +s  𝑓 )  ↔  ∃ 𝑏 ( ∃ 𝑠  ∈  𝑆 𝑏  =  ( 𝐴  +s  𝑠 )  ∧  𝑏  ≤s  ( 𝐴  +s  𝑓 ) ) ) | 
						
							| 158 |  | rexcom4 | ⊢ ( ∃ 𝑠  ∈  𝑆 ∃ 𝑏 ( 𝑏  =  ( 𝐴  +s  𝑠 )  ∧  𝑏  ≤s  ( 𝐴  +s  𝑓 ) )  ↔  ∃ 𝑏 ∃ 𝑠  ∈  𝑆 ( 𝑏  =  ( 𝐴  +s  𝑠 )  ∧  𝑏  ≤s  ( 𝐴  +s  𝑓 ) ) ) | 
						
							| 159 |  | ovex | ⊢ ( 𝐴  +s  𝑠 )  ∈  V | 
						
							| 160 |  | breq1 | ⊢ ( 𝑏  =  ( 𝐴  +s  𝑠 )  →  ( 𝑏  ≤s  ( 𝐴  +s  𝑓 )  ↔  ( 𝐴  +s  𝑠 )  ≤s  ( 𝐴  +s  𝑓 ) ) ) | 
						
							| 161 | 159 160 | ceqsexv | ⊢ ( ∃ 𝑏 ( 𝑏  =  ( 𝐴  +s  𝑠 )  ∧  𝑏  ≤s  ( 𝐴  +s  𝑓 ) )  ↔  ( 𝐴  +s  𝑠 )  ≤s  ( 𝐴  +s  𝑓 ) ) | 
						
							| 162 | 161 | rexbii | ⊢ ( ∃ 𝑠  ∈  𝑆 ∃ 𝑏 ( 𝑏  =  ( 𝐴  +s  𝑠 )  ∧  𝑏  ≤s  ( 𝐴  +s  𝑓 ) )  ↔  ∃ 𝑠  ∈  𝑆 ( 𝐴  +s  𝑠 )  ≤s  ( 𝐴  +s  𝑓 ) ) | 
						
							| 163 |  | r19.41v | ⊢ ( ∃ 𝑠  ∈  𝑆 ( 𝑏  =  ( 𝐴  +s  𝑠 )  ∧  𝑏  ≤s  ( 𝐴  +s  𝑓 ) )  ↔  ( ∃ 𝑠  ∈  𝑆 𝑏  =  ( 𝐴  +s  𝑠 )  ∧  𝑏  ≤s  ( 𝐴  +s  𝑓 ) ) ) | 
						
							| 164 | 163 | exbii | ⊢ ( ∃ 𝑏 ∃ 𝑠  ∈  𝑆 ( 𝑏  =  ( 𝐴  +s  𝑠 )  ∧  𝑏  ≤s  ( 𝐴  +s  𝑓 ) )  ↔  ∃ 𝑏 ( ∃ 𝑠  ∈  𝑆 𝑏  =  ( 𝐴  +s  𝑠 )  ∧  𝑏  ≤s  ( 𝐴  +s  𝑓 ) ) ) | 
						
							| 165 | 158 162 164 | 3bitr3ri | ⊢ ( ∃ 𝑏 ( ∃ 𝑠  ∈  𝑆 𝑏  =  ( 𝐴  +s  𝑠 )  ∧  𝑏  ≤s  ( 𝐴  +s  𝑓 ) )  ↔  ∃ 𝑠  ∈  𝑆 ( 𝐴  +s  𝑠 )  ≤s  ( 𝐴  +s  𝑓 ) ) | 
						
							| 166 | 157 165 | bitri | ⊢ ( ∃ 𝑏  ∈  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } 𝑏  ≤s  ( 𝐴  +s  𝑓 )  ↔  ∃ 𝑠  ∈  𝑆 ( 𝐴  +s  𝑠 )  ≤s  ( 𝐴  +s  𝑓 ) ) | 
						
							| 167 |  | ssun2 | ⊢ { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) }  ⊆  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) | 
						
							| 168 |  | ssrexv | ⊢ ( { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) }  ⊆  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } )  →  ( ∃ 𝑏  ∈  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } 𝑏  ≤s  ( 𝐴  +s  𝑓 )  →  ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  ( 𝐴  +s  𝑓 ) ) ) | 
						
							| 169 | 167 168 | ax-mp | ⊢ ( ∃ 𝑏  ∈  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } 𝑏  ≤s  ( 𝐴  +s  𝑓 )  →  ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  ( 𝐴  +s  𝑓 ) ) | 
						
							| 170 | 166 169 | sylbir | ⊢ ( ∃ 𝑠  ∈  𝑆 ( 𝐴  +s  𝑠 )  ≤s  ( 𝐴  +s  𝑓 )  →  ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  ( 𝐴  +s  𝑓 ) ) | 
						
							| 171 | 170 | ralimi | ⊢ ( ∀ 𝑓  ∈  (  R  ‘ 𝐵 ) ∃ 𝑠  ∈  𝑆 ( 𝐴  +s  𝑠 )  ≤s  ( 𝐴  +s  𝑓 )  →  ∀ 𝑓  ∈  (  R  ‘ 𝐵 ) ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  ( 𝐴  +s  𝑓 ) ) | 
						
							| 172 | 154 171 | syl | ⊢ ( 𝜑  →  ∀ 𝑓  ∈  (  R  ‘ 𝐵 ) ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  ( 𝐴  +s  𝑓 ) ) | 
						
							| 173 |  | ralunb | ⊢ ( ∀ 𝑎  ∈  ( { 𝑐  ∣  ∃ 𝑒  ∈  (  R  ‘ 𝐴 ) 𝑐  =  ( 𝑒  +s  𝐵 ) }  ∪  { 𝑑  ∣  ∃ 𝑓  ∈  (  R  ‘ 𝐵 ) 𝑑  =  ( 𝐴  +s  𝑓 ) } ) ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  𝑎  ↔  ( ∀ 𝑎  ∈  { 𝑐  ∣  ∃ 𝑒  ∈  (  R  ‘ 𝐴 ) 𝑐  =  ( 𝑒  +s  𝐵 ) } ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  𝑎  ∧  ∀ 𝑎  ∈  { 𝑑  ∣  ∃ 𝑓  ∈  (  R  ‘ 𝐵 ) 𝑑  =  ( 𝐴  +s  𝑓 ) } ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  𝑎 ) ) | 
						
							| 174 |  | eqeq1 | ⊢ ( 𝑐  =  𝑎  →  ( 𝑐  =  ( 𝑒  +s  𝐵 )  ↔  𝑎  =  ( 𝑒  +s  𝐵 ) ) ) | 
						
							| 175 | 174 | rexbidv | ⊢ ( 𝑐  =  𝑎  →  ( ∃ 𝑒  ∈  (  R  ‘ 𝐴 ) 𝑐  =  ( 𝑒  +s  𝐵 )  ↔  ∃ 𝑒  ∈  (  R  ‘ 𝐴 ) 𝑎  =  ( 𝑒  +s  𝐵 ) ) ) | 
						
							| 176 | 175 | ralab | ⊢ ( ∀ 𝑎  ∈  { 𝑐  ∣  ∃ 𝑒  ∈  (  R  ‘ 𝐴 ) 𝑐  =  ( 𝑒  +s  𝐵 ) } ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  𝑎  ↔  ∀ 𝑎 ( ∃ 𝑒  ∈  (  R  ‘ 𝐴 ) 𝑎  =  ( 𝑒  +s  𝐵 )  →  ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  𝑎 ) ) | 
						
							| 177 |  | ralcom4 | ⊢ ( ∀ 𝑒  ∈  (  R  ‘ 𝐴 ) ∀ 𝑎 ( 𝑎  =  ( 𝑒  +s  𝐵 )  →  ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  𝑎 )  ↔  ∀ 𝑎 ∀ 𝑒  ∈  (  R  ‘ 𝐴 ) ( 𝑎  =  ( 𝑒  +s  𝐵 )  →  ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  𝑎 ) ) | 
						
							| 178 |  | ovex | ⊢ ( 𝑒  +s  𝐵 )  ∈  V | 
						
							| 179 |  | breq2 | ⊢ ( 𝑎  =  ( 𝑒  +s  𝐵 )  →  ( 𝑏  ≤s  𝑎  ↔  𝑏  ≤s  ( 𝑒  +s  𝐵 ) ) ) | 
						
							| 180 | 179 | rexbidv | ⊢ ( 𝑎  =  ( 𝑒  +s  𝐵 )  →  ( ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  𝑎  ↔  ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  ( 𝑒  +s  𝐵 ) ) ) | 
						
							| 181 | 178 180 | ceqsalv | ⊢ ( ∀ 𝑎 ( 𝑎  =  ( 𝑒  +s  𝐵 )  →  ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  𝑎 )  ↔  ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  ( 𝑒  +s  𝐵 ) ) | 
						
							| 182 | 181 | ralbii | ⊢ ( ∀ 𝑒  ∈  (  R  ‘ 𝐴 ) ∀ 𝑎 ( 𝑎  =  ( 𝑒  +s  𝐵 )  →  ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  𝑎 )  ↔  ∀ 𝑒  ∈  (  R  ‘ 𝐴 ) ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  ( 𝑒  +s  𝐵 ) ) | 
						
							| 183 |  | r19.23v | ⊢ ( ∀ 𝑒  ∈  (  R  ‘ 𝐴 ) ( 𝑎  =  ( 𝑒  +s  𝐵 )  →  ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  𝑎 )  ↔  ( ∃ 𝑒  ∈  (  R  ‘ 𝐴 ) 𝑎  =  ( 𝑒  +s  𝐵 )  →  ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  𝑎 ) ) | 
						
							| 184 | 183 | albii | ⊢ ( ∀ 𝑎 ∀ 𝑒  ∈  (  R  ‘ 𝐴 ) ( 𝑎  =  ( 𝑒  +s  𝐵 )  →  ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  𝑎 )  ↔  ∀ 𝑎 ( ∃ 𝑒  ∈  (  R  ‘ 𝐴 ) 𝑎  =  ( 𝑒  +s  𝐵 )  →  ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  𝑎 ) ) | 
						
							| 185 | 177 182 184 | 3bitr3ri | ⊢ ( ∀ 𝑎 ( ∃ 𝑒  ∈  (  R  ‘ 𝐴 ) 𝑎  =  ( 𝑒  +s  𝐵 )  →  ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  𝑎 )  ↔  ∀ 𝑒  ∈  (  R  ‘ 𝐴 ) ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  ( 𝑒  +s  𝐵 ) ) | 
						
							| 186 | 176 185 | bitri | ⊢ ( ∀ 𝑎  ∈  { 𝑐  ∣  ∃ 𝑒  ∈  (  R  ‘ 𝐴 ) 𝑐  =  ( 𝑒  +s  𝐵 ) } ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  𝑎  ↔  ∀ 𝑒  ∈  (  R  ‘ 𝐴 ) ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  ( 𝑒  +s  𝐵 ) ) | 
						
							| 187 |  | eqeq1 | ⊢ ( 𝑑  =  𝑎  →  ( 𝑑  =  ( 𝐴  +s  𝑓 )  ↔  𝑎  =  ( 𝐴  +s  𝑓 ) ) ) | 
						
							| 188 | 187 | rexbidv | ⊢ ( 𝑑  =  𝑎  →  ( ∃ 𝑓  ∈  (  R  ‘ 𝐵 ) 𝑑  =  ( 𝐴  +s  𝑓 )  ↔  ∃ 𝑓  ∈  (  R  ‘ 𝐵 ) 𝑎  =  ( 𝐴  +s  𝑓 ) ) ) | 
						
							| 189 | 188 | ralab | ⊢ ( ∀ 𝑎  ∈  { 𝑑  ∣  ∃ 𝑓  ∈  (  R  ‘ 𝐵 ) 𝑑  =  ( 𝐴  +s  𝑓 ) } ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  𝑎  ↔  ∀ 𝑎 ( ∃ 𝑓  ∈  (  R  ‘ 𝐵 ) 𝑎  =  ( 𝐴  +s  𝑓 )  →  ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  𝑎 ) ) | 
						
							| 190 |  | ralcom4 | ⊢ ( ∀ 𝑓  ∈  (  R  ‘ 𝐵 ) ∀ 𝑎 ( 𝑎  =  ( 𝐴  +s  𝑓 )  →  ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  𝑎 )  ↔  ∀ 𝑎 ∀ 𝑓  ∈  (  R  ‘ 𝐵 ) ( 𝑎  =  ( 𝐴  +s  𝑓 )  →  ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  𝑎 ) ) | 
						
							| 191 |  | ovex | ⊢ ( 𝐴  +s  𝑓 )  ∈  V | 
						
							| 192 |  | breq2 | ⊢ ( 𝑎  =  ( 𝐴  +s  𝑓 )  →  ( 𝑏  ≤s  𝑎  ↔  𝑏  ≤s  ( 𝐴  +s  𝑓 ) ) ) | 
						
							| 193 | 192 | rexbidv | ⊢ ( 𝑎  =  ( 𝐴  +s  𝑓 )  →  ( ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  𝑎  ↔  ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  ( 𝐴  +s  𝑓 ) ) ) | 
						
							| 194 | 191 193 | ceqsalv | ⊢ ( ∀ 𝑎 ( 𝑎  =  ( 𝐴  +s  𝑓 )  →  ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  𝑎 )  ↔  ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  ( 𝐴  +s  𝑓 ) ) | 
						
							| 195 | 194 | ralbii | ⊢ ( ∀ 𝑓  ∈  (  R  ‘ 𝐵 ) ∀ 𝑎 ( 𝑎  =  ( 𝐴  +s  𝑓 )  →  ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  𝑎 )  ↔  ∀ 𝑓  ∈  (  R  ‘ 𝐵 ) ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  ( 𝐴  +s  𝑓 ) ) | 
						
							| 196 |  | r19.23v | ⊢ ( ∀ 𝑓  ∈  (  R  ‘ 𝐵 ) ( 𝑎  =  ( 𝐴  +s  𝑓 )  →  ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  𝑎 )  ↔  ( ∃ 𝑓  ∈  (  R  ‘ 𝐵 ) 𝑎  =  ( 𝐴  +s  𝑓 )  →  ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  𝑎 ) ) | 
						
							| 197 | 196 | albii | ⊢ ( ∀ 𝑎 ∀ 𝑓  ∈  (  R  ‘ 𝐵 ) ( 𝑎  =  ( 𝐴  +s  𝑓 )  →  ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  𝑎 )  ↔  ∀ 𝑎 ( ∃ 𝑓  ∈  (  R  ‘ 𝐵 ) 𝑎  =  ( 𝐴  +s  𝑓 )  →  ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  𝑎 ) ) | 
						
							| 198 | 190 195 197 | 3bitr3ri | ⊢ ( ∀ 𝑎 ( ∃ 𝑓  ∈  (  R  ‘ 𝐵 ) 𝑎  =  ( 𝐴  +s  𝑓 )  →  ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  𝑎 )  ↔  ∀ 𝑓  ∈  (  R  ‘ 𝐵 ) ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  ( 𝐴  +s  𝑓 ) ) | 
						
							| 199 | 189 198 | bitri | ⊢ ( ∀ 𝑎  ∈  { 𝑑  ∣  ∃ 𝑓  ∈  (  R  ‘ 𝐵 ) 𝑑  =  ( 𝐴  +s  𝑓 ) } ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  𝑎  ↔  ∀ 𝑓  ∈  (  R  ‘ 𝐵 ) ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  ( 𝐴  +s  𝑓 ) ) | 
						
							| 200 | 186 199 | anbi12i | ⊢ ( ( ∀ 𝑎  ∈  { 𝑐  ∣  ∃ 𝑒  ∈  (  R  ‘ 𝐴 ) 𝑐  =  ( 𝑒  +s  𝐵 ) } ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  𝑎  ∧  ∀ 𝑎  ∈  { 𝑑  ∣  ∃ 𝑓  ∈  (  R  ‘ 𝐵 ) 𝑑  =  ( 𝐴  +s  𝑓 ) } ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  𝑎 )  ↔  ( ∀ 𝑒  ∈  (  R  ‘ 𝐴 ) ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  ( 𝑒  +s  𝐵 )  ∧  ∀ 𝑓  ∈  (  R  ‘ 𝐵 ) ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  ( 𝐴  +s  𝑓 ) ) ) | 
						
							| 201 | 173 200 | bitri | ⊢ ( ∀ 𝑎  ∈  ( { 𝑐  ∣  ∃ 𝑒  ∈  (  R  ‘ 𝐴 ) 𝑐  =  ( 𝑒  +s  𝐵 ) }  ∪  { 𝑑  ∣  ∃ 𝑓  ∈  (  R  ‘ 𝐵 ) 𝑑  =  ( 𝐴  +s  𝑓 ) } ) ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  𝑎  ↔  ( ∀ 𝑒  ∈  (  R  ‘ 𝐴 ) ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  ( 𝑒  +s  𝐵 )  ∧  ∀ 𝑓  ∈  (  R  ‘ 𝐵 ) ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  ( 𝐴  +s  𝑓 ) ) ) | 
						
							| 202 | 141 172 201 | sylanbrc | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  ( { 𝑐  ∣  ∃ 𝑒  ∈  (  R  ‘ 𝐴 ) 𝑐  =  ( 𝑒  +s  𝐵 ) }  ∪  { 𝑑  ∣  ∃ 𝑓  ∈  (  R  ‘ 𝐵 ) 𝑑  =  ( 𝐴  +s  𝑓 ) } ) ∃ 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) 𝑏  ≤s  𝑎 ) | 
						
							| 203 |  | eqid | ⊢ ( 𝑙  ∈  𝐿  ↦  ( 𝑙  +s  𝐵 ) )  =  ( 𝑙  ∈  𝐿  ↦  ( 𝑙  +s  𝐵 ) ) | 
						
							| 204 | 203 | rnmpt | ⊢ ran  ( 𝑙  ∈  𝐿  ↦  ( 𝑙  +s  𝐵 ) )  =  { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) } | 
						
							| 205 |  | ssltex1 | ⊢ ( 𝐿  <<s  𝑅  →  𝐿  ∈  V ) | 
						
							| 206 | 1 205 | syl | ⊢ ( 𝜑  →  𝐿  ∈  V ) | 
						
							| 207 | 206 | mptexd | ⊢ ( 𝜑  →  ( 𝑙  ∈  𝐿  ↦  ( 𝑙  +s  𝐵 ) )  ∈  V ) | 
						
							| 208 |  | rnexg | ⊢ ( ( 𝑙  ∈  𝐿  ↦  ( 𝑙  +s  𝐵 ) )  ∈  V  →  ran  ( 𝑙  ∈  𝐿  ↦  ( 𝑙  +s  𝐵 ) )  ∈  V ) | 
						
							| 209 | 207 208 | syl | ⊢ ( 𝜑  →  ran  ( 𝑙  ∈  𝐿  ↦  ( 𝑙  +s  𝐵 ) )  ∈  V ) | 
						
							| 210 | 204 209 | eqeltrrid | ⊢ ( 𝜑  →  { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∈  V ) | 
						
							| 211 |  | eqid | ⊢ ( 𝑚  ∈  𝑀  ↦  ( 𝐴  +s  𝑚 ) )  =  ( 𝑚  ∈  𝑀  ↦  ( 𝐴  +s  𝑚 ) ) | 
						
							| 212 | 211 | rnmpt | ⊢ ran  ( 𝑚  ∈  𝑀  ↦  ( 𝐴  +s  𝑚 ) )  =  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } | 
						
							| 213 |  | ssltex1 | ⊢ ( 𝑀  <<s  𝑆  →  𝑀  ∈  V ) | 
						
							| 214 | 2 213 | syl | ⊢ ( 𝜑  →  𝑀  ∈  V ) | 
						
							| 215 | 214 | mptexd | ⊢ ( 𝜑  →  ( 𝑚  ∈  𝑀  ↦  ( 𝐴  +s  𝑚 ) )  ∈  V ) | 
						
							| 216 |  | rnexg | ⊢ ( ( 𝑚  ∈  𝑀  ↦  ( 𝐴  +s  𝑚 ) )  ∈  V  →  ran  ( 𝑚  ∈  𝑀  ↦  ( 𝐴  +s  𝑚 ) )  ∈  V ) | 
						
							| 217 | 215 216 | syl | ⊢ ( 𝜑  →  ran  ( 𝑚  ∈  𝑀  ↦  ( 𝐴  +s  𝑚 ) )  ∈  V ) | 
						
							| 218 | 212 217 | eqeltrrid | ⊢ ( 𝜑  →  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) }  ∈  V ) | 
						
							| 219 | 210 218 | unexd | ⊢ ( 𝜑  →  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } )  ∈  V ) | 
						
							| 220 |  | snex | ⊢ { ( 𝐴  +s  𝐵 ) }  ∈  V | 
						
							| 221 | 220 | a1i | ⊢ ( 𝜑  →  { ( 𝐴  +s  𝐵 ) }  ∈  V ) | 
						
							| 222 | 24 | sselda | ⊢ ( ( 𝜑  ∧  𝑙  ∈  𝐿 )  →  𝑙  ∈   No  ) | 
						
							| 223 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑙  ∈  𝐿 )  →  𝐵  ∈   No  ) | 
						
							| 224 | 222 223 | addscld | ⊢ ( ( 𝜑  ∧  𝑙  ∈  𝐿 )  →  ( 𝑙  +s  𝐵 )  ∈   No  ) | 
						
							| 225 |  | eleq1 | ⊢ ( 𝑦  =  ( 𝑙  +s  𝐵 )  →  ( 𝑦  ∈   No   ↔  ( 𝑙  +s  𝐵 )  ∈   No  ) ) | 
						
							| 226 | 224 225 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  𝑙  ∈  𝐿 )  →  ( 𝑦  =  ( 𝑙  +s  𝐵 )  →  𝑦  ∈   No  ) ) | 
						
							| 227 | 226 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 )  →  𝑦  ∈   No  ) ) | 
						
							| 228 | 227 | abssdv | ⊢ ( 𝜑  →  { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ⊆   No  ) | 
						
							| 229 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑀 )  →  𝐴  ∈   No  ) | 
						
							| 230 | 55 | sselda | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑀 )  →  𝑚  ∈   No  ) | 
						
							| 231 | 229 230 | addscld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑀 )  →  ( 𝐴  +s  𝑚 )  ∈   No  ) | 
						
							| 232 |  | eleq1 | ⊢ ( 𝑧  =  ( 𝐴  +s  𝑚 )  →  ( 𝑧  ∈   No   ↔  ( 𝐴  +s  𝑚 )  ∈   No  ) ) | 
						
							| 233 | 231 232 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑀 )  →  ( 𝑧  =  ( 𝐴  +s  𝑚 )  →  𝑧  ∈   No  ) ) | 
						
							| 234 | 233 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 )  →  𝑧  ∈   No  ) ) | 
						
							| 235 | 234 | abssdv | ⊢ ( 𝜑  →  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) }  ⊆   No  ) | 
						
							| 236 | 228 235 | unssd | ⊢ ( 𝜑  →  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } )  ⊆   No  ) | 
						
							| 237 | 6 8 | addscld | ⊢ ( 𝜑  →  ( 𝐴  +s  𝐵 )  ∈   No  ) | 
						
							| 238 | 237 | snssd | ⊢ ( 𝜑  →  { ( 𝐴  +s  𝐵 ) }  ⊆   No  ) | 
						
							| 239 |  | velsn | ⊢ ( 𝑏  ∈  { ( 𝐴  +s  𝐵 ) }  ↔  𝑏  =  ( 𝐴  +s  𝐵 ) ) | 
						
							| 240 |  | elun | ⊢ ( 𝑎  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } )  ↔  ( 𝑎  ∈  { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∨  𝑎  ∈  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) ) | 
						
							| 241 |  | vex | ⊢ 𝑎  ∈  V | 
						
							| 242 |  | eqeq1 | ⊢ ( 𝑦  =  𝑎  →  ( 𝑦  =  ( 𝑙  +s  𝐵 )  ↔  𝑎  =  ( 𝑙  +s  𝐵 ) ) ) | 
						
							| 243 | 242 | rexbidv | ⊢ ( 𝑦  =  𝑎  →  ( ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 )  ↔  ∃ 𝑙  ∈  𝐿 𝑎  =  ( 𝑙  +s  𝐵 ) ) ) | 
						
							| 244 | 241 243 | elab | ⊢ ( 𝑎  ∈  { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ↔  ∃ 𝑙  ∈  𝐿 𝑎  =  ( 𝑙  +s  𝐵 ) ) | 
						
							| 245 |  | eqeq1 | ⊢ ( 𝑧  =  𝑎  →  ( 𝑧  =  ( 𝐴  +s  𝑚 )  ↔  𝑎  =  ( 𝐴  +s  𝑚 ) ) ) | 
						
							| 246 | 245 | rexbidv | ⊢ ( 𝑧  =  𝑎  →  ( ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 )  ↔  ∃ 𝑚  ∈  𝑀 𝑎  =  ( 𝐴  +s  𝑚 ) ) ) | 
						
							| 247 | 241 246 | elab | ⊢ ( 𝑎  ∈  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) }  ↔  ∃ 𝑚  ∈  𝑀 𝑎  =  ( 𝐴  +s  𝑚 ) ) | 
						
							| 248 | 244 247 | orbi12i | ⊢ ( ( 𝑎  ∈  { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∨  𝑎  ∈  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } )  ↔  ( ∃ 𝑙  ∈  𝐿 𝑎  =  ( 𝑙  +s  𝐵 )  ∨  ∃ 𝑚  ∈  𝑀 𝑎  =  ( 𝐴  +s  𝑚 ) ) ) | 
						
							| 249 | 240 248 | bitri | ⊢ ( 𝑎  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } )  ↔  ( ∃ 𝑙  ∈  𝐿 𝑎  =  ( 𝑙  +s  𝐵 )  ∨  ∃ 𝑚  ∈  𝑀 𝑎  =  ( 𝐴  +s  𝑚 ) ) ) | 
						
							| 250 |  | scutcut | ⊢ ( 𝐿  <<s  𝑅  →  ( ( 𝐿  |s  𝑅 )  ∈   No   ∧  𝐿  <<s  { ( 𝐿  |s  𝑅 ) }  ∧  { ( 𝐿  |s  𝑅 ) }  <<s  𝑅 ) ) | 
						
							| 251 | 1 250 | syl | ⊢ ( 𝜑  →  ( ( 𝐿  |s  𝑅 )  ∈   No   ∧  𝐿  <<s  { ( 𝐿  |s  𝑅 ) }  ∧  { ( 𝐿  |s  𝑅 ) }  <<s  𝑅 ) ) | 
						
							| 252 | 251 | simp2d | ⊢ ( 𝜑  →  𝐿  <<s  { ( 𝐿  |s  𝑅 ) } ) | 
						
							| 253 | 252 | adantr | ⊢ ( ( 𝜑  ∧  𝑙  ∈  𝐿 )  →  𝐿  <<s  { ( 𝐿  |s  𝑅 ) } ) | 
						
							| 254 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑙  ∈  𝐿 )  →  𝑙  ∈  𝐿 ) | 
						
							| 255 |  | ovex | ⊢ ( 𝐿  |s  𝑅 )  ∈  V | 
						
							| 256 | 255 | snid | ⊢ ( 𝐿  |s  𝑅 )  ∈  { ( 𝐿  |s  𝑅 ) } | 
						
							| 257 | 256 | a1i | ⊢ ( ( 𝜑  ∧  𝑙  ∈  𝐿 )  →  ( 𝐿  |s  𝑅 )  ∈  { ( 𝐿  |s  𝑅 ) } ) | 
						
							| 258 | 253 254 257 | ssltsepcd | ⊢ ( ( 𝜑  ∧  𝑙  ∈  𝐿 )  →  𝑙  <s  ( 𝐿  |s  𝑅 ) ) | 
						
							| 259 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑙  ∈  𝐿 )  →  𝐴  =  ( 𝐿  |s  𝑅 ) ) | 
						
							| 260 | 258 259 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑙  ∈  𝐿 )  →  𝑙  <s  𝐴 ) | 
						
							| 261 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑙  ∈  𝐿 )  →  𝐴  ∈   No  ) | 
						
							| 262 | 222 261 223 | sltadd1d | ⊢ ( ( 𝜑  ∧  𝑙  ∈  𝐿 )  →  ( 𝑙  <s  𝐴  ↔  ( 𝑙  +s  𝐵 )  <s  ( 𝐴  +s  𝐵 ) ) ) | 
						
							| 263 | 260 262 | mpbid | ⊢ ( ( 𝜑  ∧  𝑙  ∈  𝐿 )  →  ( 𝑙  +s  𝐵 )  <s  ( 𝐴  +s  𝐵 ) ) | 
						
							| 264 |  | breq1 | ⊢ ( 𝑎  =  ( 𝑙  +s  𝐵 )  →  ( 𝑎  <s  ( 𝐴  +s  𝐵 )  ↔  ( 𝑙  +s  𝐵 )  <s  ( 𝐴  +s  𝐵 ) ) ) | 
						
							| 265 | 263 264 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  𝑙  ∈  𝐿 )  →  ( 𝑎  =  ( 𝑙  +s  𝐵 )  →  𝑎  <s  ( 𝐴  +s  𝐵 ) ) ) | 
						
							| 266 | 265 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑙  ∈  𝐿 𝑎  =  ( 𝑙  +s  𝐵 )  →  𝑎  <s  ( 𝐴  +s  𝐵 ) ) ) | 
						
							| 267 |  | scutcut | ⊢ ( 𝑀  <<s  𝑆  →  ( ( 𝑀  |s  𝑆 )  ∈   No   ∧  𝑀  <<s  { ( 𝑀  |s  𝑆 ) }  ∧  { ( 𝑀  |s  𝑆 ) }  <<s  𝑆 ) ) | 
						
							| 268 | 2 267 | syl | ⊢ ( 𝜑  →  ( ( 𝑀  |s  𝑆 )  ∈   No   ∧  𝑀  <<s  { ( 𝑀  |s  𝑆 ) }  ∧  { ( 𝑀  |s  𝑆 ) }  <<s  𝑆 ) ) | 
						
							| 269 | 268 | simp2d | ⊢ ( 𝜑  →  𝑀  <<s  { ( 𝑀  |s  𝑆 ) } ) | 
						
							| 270 | 269 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑀 )  →  𝑀  <<s  { ( 𝑀  |s  𝑆 ) } ) | 
						
							| 271 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑀 )  →  𝑚  ∈  𝑀 ) | 
						
							| 272 |  | ovex | ⊢ ( 𝑀  |s  𝑆 )  ∈  V | 
						
							| 273 | 272 | snid | ⊢ ( 𝑀  |s  𝑆 )  ∈  { ( 𝑀  |s  𝑆 ) } | 
						
							| 274 | 273 | a1i | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑀 )  →  ( 𝑀  |s  𝑆 )  ∈  { ( 𝑀  |s  𝑆 ) } ) | 
						
							| 275 | 270 271 274 | ssltsepcd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑀 )  →  𝑚  <s  ( 𝑀  |s  𝑆 ) ) | 
						
							| 276 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑀 )  →  𝐵  =  ( 𝑀  |s  𝑆 ) ) | 
						
							| 277 | 275 276 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑀 )  →  𝑚  <s  𝐵 ) | 
						
							| 278 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑀 )  →  𝐵  ∈   No  ) | 
						
							| 279 | 230 278 229 | sltadd2d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑀 )  →  ( 𝑚  <s  𝐵  ↔  ( 𝐴  +s  𝑚 )  <s  ( 𝐴  +s  𝐵 ) ) ) | 
						
							| 280 | 277 279 | mpbid | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑀 )  →  ( 𝐴  +s  𝑚 )  <s  ( 𝐴  +s  𝐵 ) ) | 
						
							| 281 |  | breq1 | ⊢ ( 𝑎  =  ( 𝐴  +s  𝑚 )  →  ( 𝑎  <s  ( 𝐴  +s  𝐵 )  ↔  ( 𝐴  +s  𝑚 )  <s  ( 𝐴  +s  𝐵 ) ) ) | 
						
							| 282 | 280 281 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑀 )  →  ( 𝑎  =  ( 𝐴  +s  𝑚 )  →  𝑎  <s  ( 𝐴  +s  𝐵 ) ) ) | 
						
							| 283 | 282 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑚  ∈  𝑀 𝑎  =  ( 𝐴  +s  𝑚 )  →  𝑎  <s  ( 𝐴  +s  𝐵 ) ) ) | 
						
							| 284 | 266 283 | jaod | ⊢ ( 𝜑  →  ( ( ∃ 𝑙  ∈  𝐿 𝑎  =  ( 𝑙  +s  𝐵 )  ∨  ∃ 𝑚  ∈  𝑀 𝑎  =  ( 𝐴  +s  𝑚 ) )  →  𝑎  <s  ( 𝐴  +s  𝐵 ) ) ) | 
						
							| 285 | 249 284 | biimtrid | ⊢ ( 𝜑  →  ( 𝑎  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } )  →  𝑎  <s  ( 𝐴  +s  𝐵 ) ) ) | 
						
							| 286 | 285 | imp | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) )  →  𝑎  <s  ( 𝐴  +s  𝐵 ) ) | 
						
							| 287 |  | breq2 | ⊢ ( 𝑏  =  ( 𝐴  +s  𝐵 )  →  ( 𝑎  <s  𝑏  ↔  𝑎  <s  ( 𝐴  +s  𝐵 ) ) ) | 
						
							| 288 | 286 287 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) )  →  ( 𝑏  =  ( 𝐴  +s  𝐵 )  →  𝑎  <s  𝑏 ) ) | 
						
							| 289 | 239 288 | biimtrid | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } ) )  →  ( 𝑏  ∈  { ( 𝐴  +s  𝐵 ) }  →  𝑎  <s  𝑏 ) ) | 
						
							| 290 | 289 | 3impia | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } )  ∧  𝑏  ∈  { ( 𝐴  +s  𝐵 ) } )  →  𝑎  <s  𝑏 ) | 
						
							| 291 | 219 221 236 238 290 | ssltd | ⊢ ( 𝜑  →  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } )  <<s  { ( 𝐴  +s  𝐵 ) } ) | 
						
							| 292 | 10 | sneqd | ⊢ ( 𝜑  →  { ( 𝐴  +s  𝐵 ) }  =  { ( ( { 𝑎  ∣  ∃ 𝑝  ∈  (  L  ‘ 𝐴 ) 𝑎  =  ( 𝑝  +s  𝐵 ) }  ∪  { 𝑏  ∣  ∃ 𝑞  ∈  (  L  ‘ 𝐵 ) 𝑏  =  ( 𝐴  +s  𝑞 ) } )  |s  ( { 𝑐  ∣  ∃ 𝑒  ∈  (  R  ‘ 𝐴 ) 𝑐  =  ( 𝑒  +s  𝐵 ) }  ∪  { 𝑑  ∣  ∃ 𝑓  ∈  (  R  ‘ 𝐵 ) 𝑑  =  ( 𝐴  +s  𝑓 ) } ) ) } ) | 
						
							| 293 | 291 292 | breqtrd | ⊢ ( 𝜑  →  ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } )  <<s  { ( ( { 𝑎  ∣  ∃ 𝑝  ∈  (  L  ‘ 𝐴 ) 𝑎  =  ( 𝑝  +s  𝐵 ) }  ∪  { 𝑏  ∣  ∃ 𝑞  ∈  (  L  ‘ 𝐵 ) 𝑏  =  ( 𝐴  +s  𝑞 ) } )  |s  ( { 𝑐  ∣  ∃ 𝑒  ∈  (  R  ‘ 𝐴 ) 𝑐  =  ( 𝑒  +s  𝐵 ) }  ∪  { 𝑑  ∣  ∃ 𝑓  ∈  (  R  ‘ 𝐵 ) 𝑑  =  ( 𝐴  +s  𝑓 ) } ) ) } ) | 
						
							| 294 |  | eqid | ⊢ ( 𝑟  ∈  𝑅  ↦  ( 𝑟  +s  𝐵 ) )  =  ( 𝑟  ∈  𝑅  ↦  ( 𝑟  +s  𝐵 ) ) | 
						
							| 295 | 294 | rnmpt | ⊢ ran  ( 𝑟  ∈  𝑅  ↦  ( 𝑟  +s  𝐵 ) )  =  { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) } | 
						
							| 296 |  | ssltex2 | ⊢ ( 𝐿  <<s  𝑅  →  𝑅  ∈  V ) | 
						
							| 297 | 1 296 | syl | ⊢ ( 𝜑  →  𝑅  ∈  V ) | 
						
							| 298 | 297 | mptexd | ⊢ ( 𝜑  →  ( 𝑟  ∈  𝑅  ↦  ( 𝑟  +s  𝐵 ) )  ∈  V ) | 
						
							| 299 |  | rnexg | ⊢ ( ( 𝑟  ∈  𝑅  ↦  ( 𝑟  +s  𝐵 ) )  ∈  V  →  ran  ( 𝑟  ∈  𝑅  ↦  ( 𝑟  +s  𝐵 ) )  ∈  V ) | 
						
							| 300 | 298 299 | syl | ⊢ ( 𝜑  →  ran  ( 𝑟  ∈  𝑅  ↦  ( 𝑟  +s  𝐵 ) )  ∈  V ) | 
						
							| 301 | 295 300 | eqeltrrid | ⊢ ( 𝜑  →  { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∈  V ) | 
						
							| 302 |  | eqid | ⊢ ( 𝑠  ∈  𝑆  ↦  ( 𝐴  +s  𝑠 ) )  =  ( 𝑠  ∈  𝑆  ↦  ( 𝐴  +s  𝑠 ) ) | 
						
							| 303 | 302 | rnmpt | ⊢ ran  ( 𝑠  ∈  𝑆  ↦  ( 𝐴  +s  𝑠 ) )  =  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } | 
						
							| 304 |  | ssltex2 | ⊢ ( 𝑀  <<s  𝑆  →  𝑆  ∈  V ) | 
						
							| 305 | 2 304 | syl | ⊢ ( 𝜑  →  𝑆  ∈  V ) | 
						
							| 306 | 305 | mptexd | ⊢ ( 𝜑  →  ( 𝑠  ∈  𝑆  ↦  ( 𝐴  +s  𝑠 ) )  ∈  V ) | 
						
							| 307 |  | rnexg | ⊢ ( ( 𝑠  ∈  𝑆  ↦  ( 𝐴  +s  𝑠 ) )  ∈  V  →  ran  ( 𝑠  ∈  𝑆  ↦  ( 𝐴  +s  𝑠 ) )  ∈  V ) | 
						
							| 308 | 306 307 | syl | ⊢ ( 𝜑  →  ran  ( 𝑠  ∈  𝑆  ↦  ( 𝐴  +s  𝑠 ) )  ∈  V ) | 
						
							| 309 | 303 308 | eqeltrrid | ⊢ ( 𝜑  →  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) }  ∈  V ) | 
						
							| 310 | 301 309 | unexd | ⊢ ( 𝜑  →  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } )  ∈  V ) | 
						
							| 311 | 113 | sselda | ⊢ ( ( 𝜑  ∧  𝑟  ∈  𝑅 )  →  𝑟  ∈   No  ) | 
						
							| 312 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  𝑅 )  →  𝐵  ∈   No  ) | 
						
							| 313 | 311 312 | addscld | ⊢ ( ( 𝜑  ∧  𝑟  ∈  𝑅 )  →  ( 𝑟  +s  𝐵 )  ∈   No  ) | 
						
							| 314 |  | eleq1 | ⊢ ( 𝑤  =  ( 𝑟  +s  𝐵 )  →  ( 𝑤  ∈   No   ↔  ( 𝑟  +s  𝐵 )  ∈   No  ) ) | 
						
							| 315 | 313 314 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  𝑟  ∈  𝑅 )  →  ( 𝑤  =  ( 𝑟  +s  𝐵 )  →  𝑤  ∈   No  ) ) | 
						
							| 316 | 315 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 )  →  𝑤  ∈   No  ) ) | 
						
							| 317 | 316 | abssdv | ⊢ ( 𝜑  →  { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ⊆   No  ) | 
						
							| 318 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑆 )  →  𝐴  ∈   No  ) | 
						
							| 319 | 144 | sselda | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑆 )  →  𝑠  ∈   No  ) | 
						
							| 320 | 318 319 | addscld | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑆 )  →  ( 𝐴  +s  𝑠 )  ∈   No  ) | 
						
							| 321 |  | eleq1 | ⊢ ( 𝑡  =  ( 𝐴  +s  𝑠 )  →  ( 𝑡  ∈   No   ↔  ( 𝐴  +s  𝑠 )  ∈   No  ) ) | 
						
							| 322 | 320 321 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑆 )  →  ( 𝑡  =  ( 𝐴  +s  𝑠 )  →  𝑡  ∈   No  ) ) | 
						
							| 323 | 322 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 )  →  𝑡  ∈   No  ) ) | 
						
							| 324 | 323 | abssdv | ⊢ ( 𝜑  →  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) }  ⊆   No  ) | 
						
							| 325 | 317 324 | unssd | ⊢ ( 𝜑  →  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } )  ⊆   No  ) | 
						
							| 326 |  | velsn | ⊢ ( 𝑎  ∈  { ( 𝐴  +s  𝐵 ) }  ↔  𝑎  =  ( 𝐴  +s  𝐵 ) ) | 
						
							| 327 |  | elun | ⊢ ( 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } )  ↔  ( 𝑏  ∈  { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∨  𝑏  ∈  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) ) | 
						
							| 328 |  | vex | ⊢ 𝑏  ∈  V | 
						
							| 329 | 328 125 | elab | ⊢ ( 𝑏  ∈  { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ↔  ∃ 𝑟  ∈  𝑅 𝑏  =  ( 𝑟  +s  𝐵 ) ) | 
						
							| 330 | 328 156 | elab | ⊢ ( 𝑏  ∈  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) }  ↔  ∃ 𝑠  ∈  𝑆 𝑏  =  ( 𝐴  +s  𝑠 ) ) | 
						
							| 331 | 329 330 | orbi12i | ⊢ ( ( 𝑏  ∈  { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∨  𝑏  ∈  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } )  ↔  ( ∃ 𝑟  ∈  𝑅 𝑏  =  ( 𝑟  +s  𝐵 )  ∨  ∃ 𝑠  ∈  𝑆 𝑏  =  ( 𝐴  +s  𝑠 ) ) ) | 
						
							| 332 | 327 331 | bitri | ⊢ ( 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } )  ↔  ( ∃ 𝑟  ∈  𝑅 𝑏  =  ( 𝑟  +s  𝐵 )  ∨  ∃ 𝑠  ∈  𝑆 𝑏  =  ( 𝐴  +s  𝑠 ) ) ) | 
						
							| 333 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  𝑅 )  →  𝐴  =  ( 𝐿  |s  𝑅 ) ) | 
						
							| 334 | 251 | simp3d | ⊢ ( 𝜑  →  { ( 𝐿  |s  𝑅 ) }  <<s  𝑅 ) | 
						
							| 335 | 334 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  𝑅 )  →  { ( 𝐿  |s  𝑅 ) }  <<s  𝑅 ) | 
						
							| 336 | 256 | a1i | ⊢ ( ( 𝜑  ∧  𝑟  ∈  𝑅 )  →  ( 𝐿  |s  𝑅 )  ∈  { ( 𝐿  |s  𝑅 ) } ) | 
						
							| 337 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  𝑅 )  →  𝑟  ∈  𝑅 ) | 
						
							| 338 | 335 336 337 | ssltsepcd | ⊢ ( ( 𝜑  ∧  𝑟  ∈  𝑅 )  →  ( 𝐿  |s  𝑅 )  <s  𝑟 ) | 
						
							| 339 | 333 338 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑟  ∈  𝑅 )  →  𝐴  <s  𝑟 ) | 
						
							| 340 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  𝑅 )  →  𝐴  ∈   No  ) | 
						
							| 341 | 340 311 312 | sltadd1d | ⊢ ( ( 𝜑  ∧  𝑟  ∈  𝑅 )  →  ( 𝐴  <s  𝑟  ↔  ( 𝐴  +s  𝐵 )  <s  ( 𝑟  +s  𝐵 ) ) ) | 
						
							| 342 | 339 341 | mpbid | ⊢ ( ( 𝜑  ∧  𝑟  ∈  𝑅 )  →  ( 𝐴  +s  𝐵 )  <s  ( 𝑟  +s  𝐵 ) ) | 
						
							| 343 |  | breq2 | ⊢ ( 𝑏  =  ( 𝑟  +s  𝐵 )  →  ( ( 𝐴  +s  𝐵 )  <s  𝑏  ↔  ( 𝐴  +s  𝐵 )  <s  ( 𝑟  +s  𝐵 ) ) ) | 
						
							| 344 | 342 343 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  𝑟  ∈  𝑅 )  →  ( 𝑏  =  ( 𝑟  +s  𝐵 )  →  ( 𝐴  +s  𝐵 )  <s  𝑏 ) ) | 
						
							| 345 | 344 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑟  ∈  𝑅 𝑏  =  ( 𝑟  +s  𝐵 )  →  ( 𝐴  +s  𝐵 )  <s  𝑏 ) ) | 
						
							| 346 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑆 )  →  𝐵  =  ( 𝑀  |s  𝑆 ) ) | 
						
							| 347 | 268 | simp3d | ⊢ ( 𝜑  →  { ( 𝑀  |s  𝑆 ) }  <<s  𝑆 ) | 
						
							| 348 | 347 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑆 )  →  { ( 𝑀  |s  𝑆 ) }  <<s  𝑆 ) | 
						
							| 349 | 273 | a1i | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑆 )  →  ( 𝑀  |s  𝑆 )  ∈  { ( 𝑀  |s  𝑆 ) } ) | 
						
							| 350 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑆 )  →  𝑠  ∈  𝑆 ) | 
						
							| 351 | 348 349 350 | ssltsepcd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑆 )  →  ( 𝑀  |s  𝑆 )  <s  𝑠 ) | 
						
							| 352 | 346 351 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑆 )  →  𝐵  <s  𝑠 ) | 
						
							| 353 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑆 )  →  𝐵  ∈   No  ) | 
						
							| 354 | 353 319 318 | sltadd2d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑆 )  →  ( 𝐵  <s  𝑠  ↔  ( 𝐴  +s  𝐵 )  <s  ( 𝐴  +s  𝑠 ) ) ) | 
						
							| 355 | 352 354 | mpbid | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑆 )  →  ( 𝐴  +s  𝐵 )  <s  ( 𝐴  +s  𝑠 ) ) | 
						
							| 356 |  | breq2 | ⊢ ( 𝑏  =  ( 𝐴  +s  𝑠 )  →  ( ( 𝐴  +s  𝐵 )  <s  𝑏  ↔  ( 𝐴  +s  𝐵 )  <s  ( 𝐴  +s  𝑠 ) ) ) | 
						
							| 357 | 355 356 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑆 )  →  ( 𝑏  =  ( 𝐴  +s  𝑠 )  →  ( 𝐴  +s  𝐵 )  <s  𝑏 ) ) | 
						
							| 358 | 357 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑠  ∈  𝑆 𝑏  =  ( 𝐴  +s  𝑠 )  →  ( 𝐴  +s  𝐵 )  <s  𝑏 ) ) | 
						
							| 359 | 345 358 | jaod | ⊢ ( 𝜑  →  ( ( ∃ 𝑟  ∈  𝑅 𝑏  =  ( 𝑟  +s  𝐵 )  ∨  ∃ 𝑠  ∈  𝑆 𝑏  =  ( 𝐴  +s  𝑠 ) )  →  ( 𝐴  +s  𝐵 )  <s  𝑏 ) ) | 
						
							| 360 | 332 359 | biimtrid | ⊢ ( 𝜑  →  ( 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } )  →  ( 𝐴  +s  𝐵 )  <s  𝑏 ) ) | 
						
							| 361 | 360 | imp | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) )  →  ( 𝐴  +s  𝐵 )  <s  𝑏 ) | 
						
							| 362 |  | breq1 | ⊢ ( 𝑎  =  ( 𝐴  +s  𝐵 )  →  ( 𝑎  <s  𝑏  ↔  ( 𝐴  +s  𝐵 )  <s  𝑏 ) ) | 
						
							| 363 | 361 362 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) )  →  ( 𝑎  =  ( 𝐴  +s  𝐵 )  →  𝑎  <s  𝑏 ) ) | 
						
							| 364 | 363 | ex | ⊢ ( 𝜑  →  ( 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } )  →  ( 𝑎  =  ( 𝐴  +s  𝐵 )  →  𝑎  <s  𝑏 ) ) ) | 
						
							| 365 | 364 | com23 | ⊢ ( 𝜑  →  ( 𝑎  =  ( 𝐴  +s  𝐵 )  →  ( 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } )  →  𝑎  <s  𝑏 ) ) ) | 
						
							| 366 | 326 365 | biimtrid | ⊢ ( 𝜑  →  ( 𝑎  ∈  { ( 𝐴  +s  𝐵 ) }  →  ( 𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } )  →  𝑎  <s  𝑏 ) ) ) | 
						
							| 367 | 366 | 3imp | ⊢ ( ( 𝜑  ∧  𝑎  ∈  { ( 𝐴  +s  𝐵 ) }  ∧  𝑏  ∈  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) )  →  𝑎  <s  𝑏 ) | 
						
							| 368 | 221 310 238 325 367 | ssltd | ⊢ ( 𝜑  →  { ( 𝐴  +s  𝐵 ) }  <<s  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) ) | 
						
							| 369 | 292 368 | eqbrtrrd | ⊢ ( 𝜑  →  { ( ( { 𝑎  ∣  ∃ 𝑝  ∈  (  L  ‘ 𝐴 ) 𝑎  =  ( 𝑝  +s  𝐵 ) }  ∪  { 𝑏  ∣  ∃ 𝑞  ∈  (  L  ‘ 𝐵 ) 𝑏  =  ( 𝐴  +s  𝑞 ) } )  |s  ( { 𝑐  ∣  ∃ 𝑒  ∈  (  R  ‘ 𝐴 ) 𝑐  =  ( 𝑒  +s  𝐵 ) }  ∪  { 𝑑  ∣  ∃ 𝑓  ∈  (  R  ‘ 𝐵 ) 𝑑  =  ( 𝐴  +s  𝑓 ) } ) ) }  <<s  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) ) | 
						
							| 370 | 18 110 202 293 369 | cofcut1d | ⊢ ( 𝜑  →  ( ( { 𝑎  ∣  ∃ 𝑝  ∈  (  L  ‘ 𝐴 ) 𝑎  =  ( 𝑝  +s  𝐵 ) }  ∪  { 𝑏  ∣  ∃ 𝑞  ∈  (  L  ‘ 𝐵 ) 𝑏  =  ( 𝐴  +s  𝑞 ) } )  |s  ( { 𝑐  ∣  ∃ 𝑒  ∈  (  R  ‘ 𝐴 ) 𝑐  =  ( 𝑒  +s  𝐵 ) }  ∪  { 𝑑  ∣  ∃ 𝑓  ∈  (  R  ‘ 𝐵 ) 𝑑  =  ( 𝐴  +s  𝑓 ) } ) )  =  ( ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } )  |s  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) ) ) | 
						
							| 371 | 10 370 | eqtrd | ⊢ ( 𝜑  →  ( 𝐴  +s  𝐵 )  =  ( ( { 𝑦  ∣  ∃ 𝑙  ∈  𝐿 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑚  ∈  𝑀 𝑧  =  ( 𝐴  +s  𝑚 ) } )  |s  ( { 𝑤  ∣  ∃ 𝑟  ∈  𝑅 𝑤  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑡  ∣  ∃ 𝑠  ∈  𝑆 𝑡  =  ( 𝐴  +s  𝑠 ) } ) ) ) |