| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
⊢ ( 𝑥 = 𝑥𝑂 → 𝑥 = 𝑥𝑂 ) |
| 2 |
|
fveq2 |
⊢ ( 𝑥 = 𝑥𝑂 → ( -us ‘ 𝑥 ) = ( -us ‘ 𝑥𝑂 ) ) |
| 3 |
1 2
|
oveq12d |
⊢ ( 𝑥 = 𝑥𝑂 → ( 𝑥 +s ( -us ‘ 𝑥 ) ) = ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) ) |
| 4 |
3
|
eqeq1d |
⊢ ( 𝑥 = 𝑥𝑂 → ( ( 𝑥 +s ( -us ‘ 𝑥 ) ) = 0s ↔ ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ) |
| 5 |
|
id |
⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) |
| 6 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( -us ‘ 𝑥 ) = ( -us ‘ 𝐴 ) ) |
| 7 |
5 6
|
oveq12d |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 +s ( -us ‘ 𝑥 ) ) = ( 𝐴 +s ( -us ‘ 𝐴 ) ) ) |
| 8 |
7
|
eqeq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 +s ( -us ‘ 𝑥 ) ) = 0s ↔ ( 𝐴 +s ( -us ‘ 𝐴 ) ) = 0s ) ) |
| 9 |
|
lltropt |
⊢ ( L ‘ 𝑥 ) <<s ( R ‘ 𝑥 ) |
| 10 |
9
|
a1i |
⊢ ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) → ( L ‘ 𝑥 ) <<s ( R ‘ 𝑥 ) ) |
| 11 |
|
negscut2 |
⊢ ( 𝑥 ∈ No → ( -us “ ( R ‘ 𝑥 ) ) <<s ( -us “ ( L ‘ 𝑥 ) ) ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) → ( -us “ ( R ‘ 𝑥 ) ) <<s ( -us “ ( L ‘ 𝑥 ) ) ) |
| 13 |
|
lrcut |
⊢ ( 𝑥 ∈ No → ( ( L ‘ 𝑥 ) |s ( R ‘ 𝑥 ) ) = 𝑥 ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) → ( ( L ‘ 𝑥 ) |s ( R ‘ 𝑥 ) ) = 𝑥 ) |
| 15 |
14
|
eqcomd |
⊢ ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) → 𝑥 = ( ( L ‘ 𝑥 ) |s ( R ‘ 𝑥 ) ) ) |
| 16 |
|
negsval |
⊢ ( 𝑥 ∈ No → ( -us ‘ 𝑥 ) = ( ( -us “ ( R ‘ 𝑥 ) ) |s ( -us “ ( L ‘ 𝑥 ) ) ) ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) → ( -us ‘ 𝑥 ) = ( ( -us “ ( R ‘ 𝑥 ) ) |s ( -us “ ( L ‘ 𝑥 ) ) ) ) |
| 18 |
10 12 15 17
|
addsunif |
⊢ ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) → ( 𝑥 +s ( -us ‘ 𝑥 ) ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑝 ∈ ( -us “ ( R ‘ 𝑥 ) ) 𝑏 = ( 𝑥 +s 𝑝 ) } ) |s ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑞 ∈ ( -us “ ( L ‘ 𝑥 ) ) 𝑑 = ( 𝑥 +s 𝑞 ) } ) ) ) |
| 19 |
|
negsfn |
⊢ -us Fn No |
| 20 |
|
rightssno |
⊢ ( R ‘ 𝑥 ) ⊆ No |
| 21 |
|
oveq2 |
⊢ ( 𝑝 = ( -us ‘ 𝑥𝑅 ) → ( 𝑥 +s 𝑝 ) = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) ) |
| 22 |
21
|
eqeq2d |
⊢ ( 𝑝 = ( -us ‘ 𝑥𝑅 ) → ( 𝑏 = ( 𝑥 +s 𝑝 ) ↔ 𝑏 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) ) ) |
| 23 |
22
|
rexima |
⊢ ( ( -us Fn No ∧ ( R ‘ 𝑥 ) ⊆ No ) → ( ∃ 𝑝 ∈ ( -us “ ( R ‘ 𝑥 ) ) 𝑏 = ( 𝑥 +s 𝑝 ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) ) ) |
| 24 |
19 20 23
|
mp2an |
⊢ ( ∃ 𝑝 ∈ ( -us “ ( R ‘ 𝑥 ) ) 𝑏 = ( 𝑥 +s 𝑝 ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) ) |
| 25 |
24
|
abbii |
⊢ { 𝑏 ∣ ∃ 𝑝 ∈ ( -us “ ( R ‘ 𝑥 ) ) 𝑏 = ( 𝑥 +s 𝑝 ) } = { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) } |
| 26 |
25
|
uneq2i |
⊢ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑝 ∈ ( -us “ ( R ‘ 𝑥 ) ) 𝑏 = ( 𝑥 +s 𝑝 ) } ) = ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) } ) |
| 27 |
|
leftssno |
⊢ ( L ‘ 𝑥 ) ⊆ No |
| 28 |
|
oveq2 |
⊢ ( 𝑞 = ( -us ‘ 𝑥𝐿 ) → ( 𝑥 +s 𝑞 ) = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) ) |
| 29 |
28
|
eqeq2d |
⊢ ( 𝑞 = ( -us ‘ 𝑥𝐿 ) → ( 𝑑 = ( 𝑥 +s 𝑞 ) ↔ 𝑑 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) ) ) |
| 30 |
29
|
rexima |
⊢ ( ( -us Fn No ∧ ( L ‘ 𝑥 ) ⊆ No ) → ( ∃ 𝑞 ∈ ( -us “ ( L ‘ 𝑥 ) ) 𝑑 = ( 𝑥 +s 𝑞 ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) ) ) |
| 31 |
19 27 30
|
mp2an |
⊢ ( ∃ 𝑞 ∈ ( -us “ ( L ‘ 𝑥 ) ) 𝑑 = ( 𝑥 +s 𝑞 ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) ) |
| 32 |
31
|
abbii |
⊢ { 𝑑 ∣ ∃ 𝑞 ∈ ( -us “ ( L ‘ 𝑥 ) ) 𝑑 = ( 𝑥 +s 𝑞 ) } = { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) } |
| 33 |
32
|
uneq2i |
⊢ ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑞 ∈ ( -us “ ( L ‘ 𝑥 ) ) 𝑑 = ( 𝑥 +s 𝑞 ) } ) = ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) } ) |
| 34 |
26 33
|
oveq12i |
⊢ ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑝 ∈ ( -us “ ( R ‘ 𝑥 ) ) 𝑏 = ( 𝑥 +s 𝑝 ) } ) |s ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑞 ∈ ( -us “ ( L ‘ 𝑥 ) ) 𝑑 = ( 𝑥 +s 𝑞 ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) } ) ) |
| 35 |
|
fvex |
⊢ ( L ‘ 𝑥 ) ∈ V |
| 36 |
35
|
abrexex |
⊢ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) } ∈ V |
| 37 |
|
fvex |
⊢ ( R ‘ 𝑥 ) ∈ V |
| 38 |
37
|
abrexex |
⊢ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) } ∈ V |
| 39 |
36 38
|
unex |
⊢ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) } ) ∈ V |
| 40 |
39
|
a1i |
⊢ ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) → ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) } ) ∈ V ) |
| 41 |
|
snex |
⊢ { 0s } ∈ V |
| 42 |
41
|
a1i |
⊢ ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) → { 0s } ∈ V ) |
| 43 |
27
|
sseli |
⊢ ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) → 𝑥𝐿 ∈ No ) |
| 44 |
43
|
adantl |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → 𝑥𝐿 ∈ No ) |
| 45 |
|
simpll |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → 𝑥 ∈ No ) |
| 46 |
45
|
negscld |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( -us ‘ 𝑥 ) ∈ No ) |
| 47 |
44 46
|
addscld |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) ∈ No ) |
| 48 |
|
eleq1 |
⊢ ( 𝑎 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) → ( 𝑎 ∈ No ↔ ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) ∈ No ) ) |
| 49 |
47 48
|
syl5ibrcom |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑎 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) → 𝑎 ∈ No ) ) |
| 50 |
49
|
rexlimdva |
⊢ ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) → 𝑎 ∈ No ) ) |
| 51 |
50
|
abssdv |
⊢ ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) → { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) } ⊆ No ) |
| 52 |
|
simpll |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → 𝑥 ∈ No ) |
| 53 |
20
|
sseli |
⊢ ( 𝑥𝑅 ∈ ( R ‘ 𝑥 ) → 𝑥𝑅 ∈ No ) |
| 54 |
53
|
adantl |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → 𝑥𝑅 ∈ No ) |
| 55 |
54
|
negscld |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( -us ‘ 𝑥𝑅 ) ∈ No ) |
| 56 |
52 55
|
addscld |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) ∈ No ) |
| 57 |
|
eleq1 |
⊢ ( 𝑏 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) → ( 𝑏 ∈ No ↔ ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) ∈ No ) ) |
| 58 |
56 57
|
syl5ibrcom |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑏 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) → 𝑏 ∈ No ) ) |
| 59 |
58
|
rexlimdva |
⊢ ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) → 𝑏 ∈ No ) ) |
| 60 |
59
|
abssdv |
⊢ ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) → { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) } ⊆ No ) |
| 61 |
51 60
|
unssd |
⊢ ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) → ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) } ) ⊆ No ) |
| 62 |
|
0sno |
⊢ 0s ∈ No |
| 63 |
|
snssi |
⊢ ( 0s ∈ No → { 0s } ⊆ No ) |
| 64 |
62 63
|
mp1i |
⊢ ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) → { 0s } ⊆ No ) |
| 65 |
|
elun |
⊢ ( 𝑝 ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) } ) ↔ ( 𝑝 ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) } ∨ 𝑝 ∈ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) } ) ) |
| 66 |
|
vex |
⊢ 𝑝 ∈ V |
| 67 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑝 → ( 𝑎 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) ↔ 𝑝 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) ) ) |
| 68 |
67
|
rexbidv |
⊢ ( 𝑎 = 𝑝 → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑝 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) ) ) |
| 69 |
66 68
|
elab |
⊢ ( 𝑝 ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) } ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑝 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) ) |
| 70 |
|
eqeq1 |
⊢ ( 𝑏 = 𝑝 → ( 𝑏 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) ↔ 𝑝 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) ) ) |
| 71 |
70
|
rexbidv |
⊢ ( 𝑏 = 𝑝 → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑝 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) ) ) |
| 72 |
66 71
|
elab |
⊢ ( 𝑝 ∈ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) } ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑝 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) ) |
| 73 |
69 72
|
orbi12i |
⊢ ( ( 𝑝 ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) } ∨ 𝑝 ∈ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) } ) ↔ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑝 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑝 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) ) ) |
| 74 |
65 73
|
bitri |
⊢ ( 𝑝 ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) } ) ↔ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑝 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑝 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) ) ) |
| 75 |
|
velsn |
⊢ ( 𝑞 ∈ { 0s } ↔ 𝑞 = 0s ) |
| 76 |
74 75
|
anbi12i |
⊢ ( ( 𝑝 ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) } ) ∧ 𝑞 ∈ { 0s } ) ↔ ( ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑝 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑝 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) ) ∧ 𝑞 = 0s ) ) |
| 77 |
|
leftlt |
⊢ ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) → 𝑥𝐿 <s 𝑥 ) |
| 78 |
77
|
adantl |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → 𝑥𝐿 <s 𝑥 ) |
| 79 |
|
sltnegim |
⊢ ( ( 𝑥𝐿 ∈ No ∧ 𝑥 ∈ No ) → ( 𝑥𝐿 <s 𝑥 → ( -us ‘ 𝑥 ) <s ( -us ‘ 𝑥𝐿 ) ) ) |
| 80 |
44 45 79
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑥𝐿 <s 𝑥 → ( -us ‘ 𝑥 ) <s ( -us ‘ 𝑥𝐿 ) ) ) |
| 81 |
78 80
|
mpd |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( -us ‘ 𝑥 ) <s ( -us ‘ 𝑥𝐿 ) ) |
| 82 |
44
|
negscld |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( -us ‘ 𝑥𝐿 ) ∈ No ) |
| 83 |
46 82 44
|
sltadd2d |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( ( -us ‘ 𝑥 ) <s ( -us ‘ 𝑥𝐿 ) ↔ ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) <s ( 𝑥𝐿 +s ( -us ‘ 𝑥𝐿 ) ) ) ) |
| 84 |
81 83
|
mpbid |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) <s ( 𝑥𝐿 +s ( -us ‘ 𝑥𝐿 ) ) ) |
| 85 |
|
id |
⊢ ( 𝑥𝑂 = 𝑥𝐿 → 𝑥𝑂 = 𝑥𝐿 ) |
| 86 |
|
fveq2 |
⊢ ( 𝑥𝑂 = 𝑥𝐿 → ( -us ‘ 𝑥𝑂 ) = ( -us ‘ 𝑥𝐿 ) ) |
| 87 |
85 86
|
oveq12d |
⊢ ( 𝑥𝑂 = 𝑥𝐿 → ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = ( 𝑥𝐿 +s ( -us ‘ 𝑥𝐿 ) ) ) |
| 88 |
87
|
eqeq1d |
⊢ ( 𝑥𝑂 = 𝑥𝐿 → ( ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ↔ ( 𝑥𝐿 +s ( -us ‘ 𝑥𝐿 ) ) = 0s ) ) |
| 89 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) |
| 90 |
|
elun1 |
⊢ ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) → 𝑥𝐿 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) |
| 91 |
90
|
adantl |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → 𝑥𝐿 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) |
| 92 |
88 89 91
|
rspcdva |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑥𝐿 +s ( -us ‘ 𝑥𝐿 ) ) = 0s ) |
| 93 |
84 92
|
breqtrd |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) <s 0s ) |
| 94 |
|
breq1 |
⊢ ( 𝑝 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) → ( 𝑝 <s 0s ↔ ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) <s 0s ) ) |
| 95 |
93 94
|
syl5ibrcom |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑝 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) → 𝑝 <s 0s ) ) |
| 96 |
95
|
rexlimdva |
⊢ ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑝 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) → 𝑝 <s 0s ) ) |
| 97 |
96
|
imp |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑝 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) ) → 𝑝 <s 0s ) |
| 98 |
|
rightgt |
⊢ ( 𝑥𝑅 ∈ ( R ‘ 𝑥 ) → 𝑥 <s 𝑥𝑅 ) |
| 99 |
98
|
adantl |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → 𝑥 <s 𝑥𝑅 ) |
| 100 |
52 54 55
|
sltadd1d |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑥 <s 𝑥𝑅 ↔ ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) <s ( 𝑥𝑅 +s ( -us ‘ 𝑥𝑅 ) ) ) ) |
| 101 |
99 100
|
mpbid |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) <s ( 𝑥𝑅 +s ( -us ‘ 𝑥𝑅 ) ) ) |
| 102 |
|
id |
⊢ ( 𝑥𝑂 = 𝑥𝑅 → 𝑥𝑂 = 𝑥𝑅 ) |
| 103 |
|
fveq2 |
⊢ ( 𝑥𝑂 = 𝑥𝑅 → ( -us ‘ 𝑥𝑂 ) = ( -us ‘ 𝑥𝑅 ) ) |
| 104 |
102 103
|
oveq12d |
⊢ ( 𝑥𝑂 = 𝑥𝑅 → ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = ( 𝑥𝑅 +s ( -us ‘ 𝑥𝑅 ) ) ) |
| 105 |
104
|
eqeq1d |
⊢ ( 𝑥𝑂 = 𝑥𝑅 → ( ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ↔ ( 𝑥𝑅 +s ( -us ‘ 𝑥𝑅 ) ) = 0s ) ) |
| 106 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) |
| 107 |
|
elun2 |
⊢ ( 𝑥𝑅 ∈ ( R ‘ 𝑥 ) → 𝑥𝑅 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) |
| 108 |
107
|
adantl |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → 𝑥𝑅 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ) |
| 109 |
105 106 108
|
rspcdva |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑥𝑅 +s ( -us ‘ 𝑥𝑅 ) ) = 0s ) |
| 110 |
101 109
|
breqtrd |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) <s 0s ) |
| 111 |
|
breq1 |
⊢ ( 𝑝 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) → ( 𝑝 <s 0s ↔ ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) <s 0s ) ) |
| 112 |
110 111
|
syl5ibrcom |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑝 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) → 𝑝 <s 0s ) ) |
| 113 |
112
|
rexlimdva |
⊢ ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑝 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) → 𝑝 <s 0s ) ) |
| 114 |
113
|
imp |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑝 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) ) → 𝑝 <s 0s ) |
| 115 |
97 114
|
jaodan |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑝 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑝 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) ) ) → 𝑝 <s 0s ) |
| 116 |
|
breq2 |
⊢ ( 𝑞 = 0s → ( 𝑝 <s 𝑞 ↔ 𝑝 <s 0s ) ) |
| 117 |
115 116
|
syl5ibrcom |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑝 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑝 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) ) ) → ( 𝑞 = 0s → 𝑝 <s 𝑞 ) ) |
| 118 |
117
|
expimpd |
⊢ ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) → ( ( ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑝 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑝 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) ) ∧ 𝑞 = 0s ) → 𝑝 <s 𝑞 ) ) |
| 119 |
76 118
|
biimtrid |
⊢ ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) → ( ( 𝑝 ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) } ) ∧ 𝑞 ∈ { 0s } ) → 𝑝 <s 𝑞 ) ) |
| 120 |
119
|
3impib |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑝 ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) } ) ∧ 𝑞 ∈ { 0s } ) → 𝑝 <s 𝑞 ) |
| 121 |
40 42 61 64 120
|
ssltd |
⊢ ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) → ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) } ) <<s { 0s } ) |
| 122 |
37
|
abrexex |
⊢ { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) } ∈ V |
| 123 |
35
|
abrexex |
⊢ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) } ∈ V |
| 124 |
122 123
|
unex |
⊢ ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) } ) ∈ V |
| 125 |
124
|
a1i |
⊢ ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) → ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) } ) ∈ V ) |
| 126 |
52
|
negscld |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( -us ‘ 𝑥 ) ∈ No ) |
| 127 |
54 126
|
addscld |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) ∈ No ) |
| 128 |
|
eleq1 |
⊢ ( 𝑐 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) → ( 𝑐 ∈ No ↔ ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) ∈ No ) ) |
| 129 |
127 128
|
syl5ibrcom |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑐 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) → 𝑐 ∈ No ) ) |
| 130 |
129
|
rexlimdva |
⊢ ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) → 𝑐 ∈ No ) ) |
| 131 |
130
|
abssdv |
⊢ ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) → { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) } ⊆ No ) |
| 132 |
45 82
|
addscld |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) ∈ No ) |
| 133 |
|
eleq1 |
⊢ ( 𝑑 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) → ( 𝑑 ∈ No ↔ ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) ∈ No ) ) |
| 134 |
132 133
|
syl5ibrcom |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑑 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) → 𝑑 ∈ No ) ) |
| 135 |
134
|
rexlimdva |
⊢ ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) → 𝑑 ∈ No ) ) |
| 136 |
135
|
abssdv |
⊢ ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) → { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) } ⊆ No ) |
| 137 |
131 136
|
unssd |
⊢ ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) → ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) } ) ⊆ No ) |
| 138 |
|
velsn |
⊢ ( 𝑝 ∈ { 0s } ↔ 𝑝 = 0s ) |
| 139 |
|
elun |
⊢ ( 𝑞 ∈ ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) } ) ↔ ( 𝑞 ∈ { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) } ∨ 𝑞 ∈ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) } ) ) |
| 140 |
|
vex |
⊢ 𝑞 ∈ V |
| 141 |
|
eqeq1 |
⊢ ( 𝑐 = 𝑞 → ( 𝑐 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) ↔ 𝑞 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) ) ) |
| 142 |
141
|
rexbidv |
⊢ ( 𝑐 = 𝑞 → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑞 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) ) ) |
| 143 |
140 142
|
elab |
⊢ ( 𝑞 ∈ { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) } ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑞 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) ) |
| 144 |
|
eqeq1 |
⊢ ( 𝑑 = 𝑞 → ( 𝑑 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) ↔ 𝑞 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) ) ) |
| 145 |
144
|
rexbidv |
⊢ ( 𝑑 = 𝑞 → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑞 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) ) ) |
| 146 |
140 145
|
elab |
⊢ ( 𝑞 ∈ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) } ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑞 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) ) |
| 147 |
143 146
|
orbi12i |
⊢ ( ( 𝑞 ∈ { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) } ∨ 𝑞 ∈ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) } ) ↔ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑞 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑞 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) ) ) |
| 148 |
139 147
|
bitri |
⊢ ( 𝑞 ∈ ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) } ) ↔ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑞 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑞 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) ) ) |
| 149 |
138 148
|
anbi12i |
⊢ ( ( 𝑝 ∈ { 0s } ∧ 𝑞 ∈ ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) } ) ) ↔ ( 𝑝 = 0s ∧ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑞 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑞 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) ) ) ) |
| 150 |
|
sltnegim |
⊢ ( ( 𝑥 ∈ No ∧ 𝑥𝑅 ∈ No ) → ( 𝑥 <s 𝑥𝑅 → ( -us ‘ 𝑥𝑅 ) <s ( -us ‘ 𝑥 ) ) ) |
| 151 |
52 54 150
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑥 <s 𝑥𝑅 → ( -us ‘ 𝑥𝑅 ) <s ( -us ‘ 𝑥 ) ) ) |
| 152 |
99 151
|
mpd |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( -us ‘ 𝑥𝑅 ) <s ( -us ‘ 𝑥 ) ) |
| 153 |
55 126 54
|
sltadd2d |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( ( -us ‘ 𝑥𝑅 ) <s ( -us ‘ 𝑥 ) ↔ ( 𝑥𝑅 +s ( -us ‘ 𝑥𝑅 ) ) <s ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) ) ) |
| 154 |
152 153
|
mpbid |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑥𝑅 +s ( -us ‘ 𝑥𝑅 ) ) <s ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) ) |
| 155 |
109 154
|
eqbrtrrd |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → 0s <s ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) ) |
| 156 |
|
breq2 |
⊢ ( 𝑞 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) → ( 0s <s 𝑞 ↔ 0s <s ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) ) ) |
| 157 |
155 156
|
syl5ibrcom |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑞 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) → 0s <s 𝑞 ) ) |
| 158 |
157
|
rexlimdva |
⊢ ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑞 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) → 0s <s 𝑞 ) ) |
| 159 |
158
|
imp |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑞 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) ) → 0s <s 𝑞 ) |
| 160 |
44 45 82
|
sltadd1d |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑥𝐿 <s 𝑥 ↔ ( 𝑥𝐿 +s ( -us ‘ 𝑥𝐿 ) ) <s ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) ) ) |
| 161 |
78 160
|
mpbid |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑥𝐿 +s ( -us ‘ 𝑥𝐿 ) ) <s ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) ) |
| 162 |
92 161
|
eqbrtrrd |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → 0s <s ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) ) |
| 163 |
|
breq2 |
⊢ ( 𝑞 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) → ( 0s <s 𝑞 ↔ 0s <s ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) ) ) |
| 164 |
162 163
|
syl5ibrcom |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑞 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) → 0s <s 𝑞 ) ) |
| 165 |
164
|
rexlimdva |
⊢ ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑞 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) → 0s <s 𝑞 ) ) |
| 166 |
165
|
imp |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑞 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) ) → 0s <s 𝑞 ) |
| 167 |
159 166
|
jaodan |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑞 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑞 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) ) ) → 0s <s 𝑞 ) |
| 168 |
|
breq1 |
⊢ ( 𝑝 = 0s → ( 𝑝 <s 𝑞 ↔ 0s <s 𝑞 ) ) |
| 169 |
167 168
|
syl5ibrcom |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑞 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑞 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) ) ) → ( 𝑝 = 0s → 𝑝 <s 𝑞 ) ) |
| 170 |
169
|
ex |
⊢ ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) → ( ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑞 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑞 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) ) → ( 𝑝 = 0s → 𝑝 <s 𝑞 ) ) ) |
| 171 |
170
|
impcomd |
⊢ ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) → ( ( 𝑝 = 0s ∧ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑞 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑞 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) ) ) → 𝑝 <s 𝑞 ) ) |
| 172 |
149 171
|
biimtrid |
⊢ ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) → ( ( 𝑝 ∈ { 0s } ∧ 𝑞 ∈ ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) } ) ) → 𝑝 <s 𝑞 ) ) |
| 173 |
172
|
3impib |
⊢ ( ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) ∧ 𝑝 ∈ { 0s } ∧ 𝑞 ∈ ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) } ) ) → 𝑝 <s 𝑞 ) |
| 174 |
42 125 64 137 173
|
ssltd |
⊢ ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) → { 0s } <<s ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) } ) ) |
| 175 |
121 174
|
cuteq0 |
⊢ ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) → ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us ‘ 𝑥𝑅 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us ‘ 𝑥𝐿 ) ) } ) ) = 0s ) |
| 176 |
34 175
|
eqtrid |
⊢ ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) → ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us ‘ 𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑝 ∈ ( -us “ ( R ‘ 𝑥 ) ) 𝑏 = ( 𝑥 +s 𝑝 ) } ) |s ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us ‘ 𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑞 ∈ ( -us “ ( L ‘ 𝑥 ) ) 𝑑 = ( 𝑥 +s 𝑞 ) } ) ) = 0s ) |
| 177 |
18 176
|
eqtrd |
⊢ ( ( 𝑥 ∈ No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s ) → ( 𝑥 +s ( -us ‘ 𝑥 ) ) = 0s ) |
| 178 |
177
|
ex |
⊢ ( 𝑥 ∈ No → ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us ‘ 𝑥𝑂 ) ) = 0s → ( 𝑥 +s ( -us ‘ 𝑥 ) ) = 0s ) ) |
| 179 |
4 8 178
|
noinds |
⊢ ( 𝐴 ∈ No → ( 𝐴 +s ( -us ‘ 𝐴 ) ) = 0s ) |