| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id | ⊢ ( 𝑥  =  𝑥𝑂  →  𝑥  =  𝑥𝑂 ) | 
						
							| 2 |  | fveq2 | ⊢ ( 𝑥  =  𝑥𝑂  →  (  -us  ‘ 𝑥 )  =  (  -us  ‘ 𝑥𝑂 ) ) | 
						
							| 3 | 1 2 | oveq12d | ⊢ ( 𝑥  =  𝑥𝑂  →  ( 𝑥  +s  (  -us  ‘ 𝑥 ) )  =  ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) ) ) | 
						
							| 4 | 3 | eqeq1d | ⊢ ( 𝑥  =  𝑥𝑂  →  ( ( 𝑥  +s  (  -us  ‘ 𝑥 ) )  =   0s   ↔  ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  ) ) | 
						
							| 5 |  | id | ⊢ ( 𝑥  =  𝐴  →  𝑥  =  𝐴 ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑥  =  𝐴  →  (  -us  ‘ 𝑥 )  =  (  -us  ‘ 𝐴 ) ) | 
						
							| 7 | 5 6 | oveq12d | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  +s  (  -us  ‘ 𝑥 ) )  =  ( 𝐴  +s  (  -us  ‘ 𝐴 ) ) ) | 
						
							| 8 | 7 | eqeq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥  +s  (  -us  ‘ 𝑥 ) )  =   0s   ↔  ( 𝐴  +s  (  -us  ‘ 𝐴 ) )  =   0s  ) ) | 
						
							| 9 |  | lltropt | ⊢ (  L  ‘ 𝑥 )  <<s  (  R  ‘ 𝑥 ) | 
						
							| 10 | 9 | a1i | ⊢ ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  →  (  L  ‘ 𝑥 )  <<s  (  R  ‘ 𝑥 ) ) | 
						
							| 11 |  | negscut2 | ⊢ ( 𝑥  ∈   No   →  (  -us   “  (  R  ‘ 𝑥 ) )  <<s  (  -us   “  (  L  ‘ 𝑥 ) ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  →  (  -us   “  (  R  ‘ 𝑥 ) )  <<s  (  -us   “  (  L  ‘ 𝑥 ) ) ) | 
						
							| 13 |  | lrcut | ⊢ ( 𝑥  ∈   No   →  ( (  L  ‘ 𝑥 )  |s  (  R  ‘ 𝑥 ) )  =  𝑥 ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  →  ( (  L  ‘ 𝑥 )  |s  (  R  ‘ 𝑥 ) )  =  𝑥 ) | 
						
							| 15 | 14 | eqcomd | ⊢ ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  →  𝑥  =  ( (  L  ‘ 𝑥 )  |s  (  R  ‘ 𝑥 ) ) ) | 
						
							| 16 |  | negsval | ⊢ ( 𝑥  ∈   No   →  (  -us  ‘ 𝑥 )  =  ( (  -us   “  (  R  ‘ 𝑥 ) )  |s  (  -us   “  (  L  ‘ 𝑥 ) ) ) ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  →  (  -us  ‘ 𝑥 )  =  ( (  -us   “  (  R  ‘ 𝑥 ) )  |s  (  -us   “  (  L  ‘ 𝑥 ) ) ) ) | 
						
							| 18 | 10 12 15 17 | addsunif | ⊢ ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  →  ( 𝑥  +s  (  -us  ‘ 𝑥 ) )  =  ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) ) }  ∪  { 𝑏  ∣  ∃ 𝑝  ∈  (  -us   “  (  R  ‘ 𝑥 ) ) 𝑏  =  ( 𝑥  +s  𝑝 ) } )  |s  ( { 𝑐  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑐  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) ) }  ∪  { 𝑑  ∣  ∃ 𝑞  ∈  (  -us   “  (  L  ‘ 𝑥 ) ) 𝑑  =  ( 𝑥  +s  𝑞 ) } ) ) ) | 
						
							| 19 |  | negsfn | ⊢  -us   Fn   No | 
						
							| 20 |  | rightssno | ⊢ (  R  ‘ 𝑥 )  ⊆   No | 
						
							| 21 |  | oveq2 | ⊢ ( 𝑝  =  (  -us  ‘ 𝑥𝑅 )  →  ( 𝑥  +s  𝑝 )  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) ) ) | 
						
							| 22 | 21 | eqeq2d | ⊢ ( 𝑝  =  (  -us  ‘ 𝑥𝑅 )  →  ( 𝑏  =  ( 𝑥  +s  𝑝 )  ↔  𝑏  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) ) ) ) | 
						
							| 23 | 22 | rexima | ⊢ ( (  -us   Fn   No   ∧  (  R  ‘ 𝑥 )  ⊆   No  )  →  ( ∃ 𝑝  ∈  (  -us   “  (  R  ‘ 𝑥 ) ) 𝑏  =  ( 𝑥  +s  𝑝 )  ↔  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑏  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) ) ) ) | 
						
							| 24 | 19 20 23 | mp2an | ⊢ ( ∃ 𝑝  ∈  (  -us   “  (  R  ‘ 𝑥 ) ) 𝑏  =  ( 𝑥  +s  𝑝 )  ↔  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑏  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) ) ) | 
						
							| 25 | 24 | abbii | ⊢ { 𝑏  ∣  ∃ 𝑝  ∈  (  -us   “  (  R  ‘ 𝑥 ) ) 𝑏  =  ( 𝑥  +s  𝑝 ) }  =  { 𝑏  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑏  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) ) } | 
						
							| 26 | 25 | uneq2i | ⊢ ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) ) }  ∪  { 𝑏  ∣  ∃ 𝑝  ∈  (  -us   “  (  R  ‘ 𝑥 ) ) 𝑏  =  ( 𝑥  +s  𝑝 ) } )  =  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) ) }  ∪  { 𝑏  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑏  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) ) } ) | 
						
							| 27 |  | leftssno | ⊢ (  L  ‘ 𝑥 )  ⊆   No | 
						
							| 28 |  | oveq2 | ⊢ ( 𝑞  =  (  -us  ‘ 𝑥𝐿 )  →  ( 𝑥  +s  𝑞 )  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) ) | 
						
							| 29 | 28 | eqeq2d | ⊢ ( 𝑞  =  (  -us  ‘ 𝑥𝐿 )  →  ( 𝑑  =  ( 𝑥  +s  𝑞 )  ↔  𝑑  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) ) ) | 
						
							| 30 | 29 | rexima | ⊢ ( (  -us   Fn   No   ∧  (  L  ‘ 𝑥 )  ⊆   No  )  →  ( ∃ 𝑞  ∈  (  -us   “  (  L  ‘ 𝑥 ) ) 𝑑  =  ( 𝑥  +s  𝑞 )  ↔  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑑  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) ) ) | 
						
							| 31 | 19 27 30 | mp2an | ⊢ ( ∃ 𝑞  ∈  (  -us   “  (  L  ‘ 𝑥 ) ) 𝑑  =  ( 𝑥  +s  𝑞 )  ↔  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑑  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) ) | 
						
							| 32 | 31 | abbii | ⊢ { 𝑑  ∣  ∃ 𝑞  ∈  (  -us   “  (  L  ‘ 𝑥 ) ) 𝑑  =  ( 𝑥  +s  𝑞 ) }  =  { 𝑑  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑑  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) } | 
						
							| 33 | 32 | uneq2i | ⊢ ( { 𝑐  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑐  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) ) }  ∪  { 𝑑  ∣  ∃ 𝑞  ∈  (  -us   “  (  L  ‘ 𝑥 ) ) 𝑑  =  ( 𝑥  +s  𝑞 ) } )  =  ( { 𝑐  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑐  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) ) }  ∪  { 𝑑  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑑  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) } ) | 
						
							| 34 | 26 33 | oveq12i | ⊢ ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) ) }  ∪  { 𝑏  ∣  ∃ 𝑝  ∈  (  -us   “  (  R  ‘ 𝑥 ) ) 𝑏  =  ( 𝑥  +s  𝑝 ) } )  |s  ( { 𝑐  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑐  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) ) }  ∪  { 𝑑  ∣  ∃ 𝑞  ∈  (  -us   “  (  L  ‘ 𝑥 ) ) 𝑑  =  ( 𝑥  +s  𝑞 ) } ) )  =  ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) ) }  ∪  { 𝑏  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑏  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) ) } )  |s  ( { 𝑐  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑐  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) ) }  ∪  { 𝑑  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑑  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) } ) ) | 
						
							| 35 |  | fvex | ⊢ (  L  ‘ 𝑥 )  ∈  V | 
						
							| 36 | 35 | abrexex | ⊢ { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) ) }  ∈  V | 
						
							| 37 |  | fvex | ⊢ (  R  ‘ 𝑥 )  ∈  V | 
						
							| 38 | 37 | abrexex | ⊢ { 𝑏  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑏  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) ) }  ∈  V | 
						
							| 39 | 36 38 | unex | ⊢ ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) ) }  ∪  { 𝑏  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑏  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) ) } )  ∈  V | 
						
							| 40 | 39 | a1i | ⊢ ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  →  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) ) }  ∪  { 𝑏  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑏  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) ) } )  ∈  V ) | 
						
							| 41 |  | snex | ⊢ {  0s  }  ∈  V | 
						
							| 42 | 41 | a1i | ⊢ ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  →  {  0s  }  ∈  V ) | 
						
							| 43 | 27 | sseli | ⊢ ( 𝑥𝐿  ∈  (  L  ‘ 𝑥 )  →  𝑥𝐿  ∈   No  ) | 
						
							| 44 | 43 | adantl | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝑥 ) )  →  𝑥𝐿  ∈   No  ) | 
						
							| 45 |  | simpll | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝑥 ) )  →  𝑥  ∈   No  ) | 
						
							| 46 | 45 | negscld | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝑥 ) )  →  (  -us  ‘ 𝑥 )  ∈   No  ) | 
						
							| 47 | 44 46 | addscld | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝑥 ) )  →  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) )  ∈   No  ) | 
						
							| 48 |  | eleq1 | ⊢ ( 𝑎  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) )  →  ( 𝑎  ∈   No   ↔  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) )  ∈   No  ) ) | 
						
							| 49 | 47 48 | syl5ibrcom | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝑥 ) )  →  ( 𝑎  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) )  →  𝑎  ∈   No  ) ) | 
						
							| 50 | 49 | rexlimdva | ⊢ ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  →  ( ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) )  →  𝑎  ∈   No  ) ) | 
						
							| 51 | 50 | abssdv | ⊢ ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  →  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) ) }  ⊆   No  ) | 
						
							| 52 |  | simpll | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝑅  ∈  (  R  ‘ 𝑥 ) )  →  𝑥  ∈   No  ) | 
						
							| 53 | 20 | sseli | ⊢ ( 𝑥𝑅  ∈  (  R  ‘ 𝑥 )  →  𝑥𝑅  ∈   No  ) | 
						
							| 54 | 53 | adantl | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝑅  ∈  (  R  ‘ 𝑥 ) )  →  𝑥𝑅  ∈   No  ) | 
						
							| 55 | 54 | negscld | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝑅  ∈  (  R  ‘ 𝑥 ) )  →  (  -us  ‘ 𝑥𝑅 )  ∈   No  ) | 
						
							| 56 | 52 55 | addscld | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝑅  ∈  (  R  ‘ 𝑥 ) )  →  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) )  ∈   No  ) | 
						
							| 57 |  | eleq1 | ⊢ ( 𝑏  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) )  →  ( 𝑏  ∈   No   ↔  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) )  ∈   No  ) ) | 
						
							| 58 | 56 57 | syl5ibrcom | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝑅  ∈  (  R  ‘ 𝑥 ) )  →  ( 𝑏  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) )  →  𝑏  ∈   No  ) ) | 
						
							| 59 | 58 | rexlimdva | ⊢ ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  →  ( ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑏  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) )  →  𝑏  ∈   No  ) ) | 
						
							| 60 | 59 | abssdv | ⊢ ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  →  { 𝑏  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑏  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) ) }  ⊆   No  ) | 
						
							| 61 | 51 60 | unssd | ⊢ ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  →  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) ) }  ∪  { 𝑏  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑏  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) ) } )  ⊆   No  ) | 
						
							| 62 |  | 0sno | ⊢  0s   ∈   No | 
						
							| 63 |  | snssi | ⊢ (  0s   ∈   No   →  {  0s  }  ⊆   No  ) | 
						
							| 64 | 62 63 | mp1i | ⊢ ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  →  {  0s  }  ⊆   No  ) | 
						
							| 65 |  | elun | ⊢ ( 𝑝  ∈  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) ) }  ∪  { 𝑏  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑏  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) ) } )  ↔  ( 𝑝  ∈  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) ) }  ∨  𝑝  ∈  { 𝑏  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑏  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) ) } ) ) | 
						
							| 66 |  | vex | ⊢ 𝑝  ∈  V | 
						
							| 67 |  | eqeq1 | ⊢ ( 𝑎  =  𝑝  →  ( 𝑎  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) )  ↔  𝑝  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) ) ) ) | 
						
							| 68 | 67 | rexbidv | ⊢ ( 𝑎  =  𝑝  →  ( ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) )  ↔  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑝  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) ) ) ) | 
						
							| 69 | 66 68 | elab | ⊢ ( 𝑝  ∈  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) ) }  ↔  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑝  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) ) ) | 
						
							| 70 |  | eqeq1 | ⊢ ( 𝑏  =  𝑝  →  ( 𝑏  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) )  ↔  𝑝  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) ) ) ) | 
						
							| 71 | 70 | rexbidv | ⊢ ( 𝑏  =  𝑝  →  ( ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑏  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) )  ↔  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑝  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) ) ) ) | 
						
							| 72 | 66 71 | elab | ⊢ ( 𝑝  ∈  { 𝑏  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑏  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) ) }  ↔  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑝  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) ) ) | 
						
							| 73 | 69 72 | orbi12i | ⊢ ( ( 𝑝  ∈  { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) ) }  ∨  𝑝  ∈  { 𝑏  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑏  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) ) } )  ↔  ( ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑝  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) )  ∨  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑝  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) ) ) ) | 
						
							| 74 | 65 73 | bitri | ⊢ ( 𝑝  ∈  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) ) }  ∪  { 𝑏  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑏  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) ) } )  ↔  ( ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑝  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) )  ∨  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑝  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) ) ) ) | 
						
							| 75 |  | velsn | ⊢ ( 𝑞  ∈  {  0s  }  ↔  𝑞  =   0s  ) | 
						
							| 76 | 74 75 | anbi12i | ⊢ ( ( 𝑝  ∈  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) ) }  ∪  { 𝑏  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑏  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) ) } )  ∧  𝑞  ∈  {  0s  } )  ↔  ( ( ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑝  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) )  ∨  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑝  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) ) )  ∧  𝑞  =   0s  ) ) | 
						
							| 77 |  | leftval | ⊢ (  L  ‘ 𝑥 )  =  { 𝑥𝐿  ∈  (  O  ‘ (  bday  ‘ 𝑥 ) )  ∣  𝑥𝐿  <s  𝑥 } | 
						
							| 78 | 77 | reqabi | ⊢ ( 𝑥𝐿  ∈  (  L  ‘ 𝑥 )  ↔  ( 𝑥𝐿  ∈  (  O  ‘ (  bday  ‘ 𝑥 ) )  ∧  𝑥𝐿  <s  𝑥 ) ) | 
						
							| 79 | 78 | simprbi | ⊢ ( 𝑥𝐿  ∈  (  L  ‘ 𝑥 )  →  𝑥𝐿  <s  𝑥 ) | 
						
							| 80 | 79 | adantl | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝑥 ) )  →  𝑥𝐿  <s  𝑥 ) | 
						
							| 81 |  | sltnegim | ⊢ ( ( 𝑥𝐿  ∈   No   ∧  𝑥  ∈   No  )  →  ( 𝑥𝐿  <s  𝑥  →  (  -us  ‘ 𝑥 )  <s  (  -us  ‘ 𝑥𝐿 ) ) ) | 
						
							| 82 | 44 45 81 | syl2anc | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝑥 ) )  →  ( 𝑥𝐿  <s  𝑥  →  (  -us  ‘ 𝑥 )  <s  (  -us  ‘ 𝑥𝐿 ) ) ) | 
						
							| 83 | 80 82 | mpd | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝑥 ) )  →  (  -us  ‘ 𝑥 )  <s  (  -us  ‘ 𝑥𝐿 ) ) | 
						
							| 84 | 44 | negscld | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝑥 ) )  →  (  -us  ‘ 𝑥𝐿 )  ∈   No  ) | 
						
							| 85 | 46 84 44 | sltadd2d | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝑥 ) )  →  ( (  -us  ‘ 𝑥 )  <s  (  -us  ‘ 𝑥𝐿 )  ↔  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) )  <s  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥𝐿 ) ) ) ) | 
						
							| 86 | 83 85 | mpbid | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝑥 ) )  →  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) )  <s  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥𝐿 ) ) ) | 
						
							| 87 |  | id | ⊢ ( 𝑥𝑂  =  𝑥𝐿  →  𝑥𝑂  =  𝑥𝐿 ) | 
						
							| 88 |  | fveq2 | ⊢ ( 𝑥𝑂  =  𝑥𝐿  →  (  -us  ‘ 𝑥𝑂 )  =  (  -us  ‘ 𝑥𝐿 ) ) | 
						
							| 89 | 87 88 | oveq12d | ⊢ ( 𝑥𝑂  =  𝑥𝐿  →  ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥𝐿 ) ) ) | 
						
							| 90 | 89 | eqeq1d | ⊢ ( 𝑥𝑂  =  𝑥𝐿  →  ( ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s   ↔  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥𝐿 ) )  =   0s  ) ) | 
						
							| 91 |  | simplr | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝑥 ) )  →  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  ) | 
						
							| 92 |  | elun1 | ⊢ ( 𝑥𝐿  ∈  (  L  ‘ 𝑥 )  →  𝑥𝐿  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ) | 
						
							| 93 | 92 | adantl | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝑥 ) )  →  𝑥𝐿  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ) | 
						
							| 94 | 90 91 93 | rspcdva | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝑥 ) )  →  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥𝐿 ) )  =   0s  ) | 
						
							| 95 | 86 94 | breqtrd | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝑥 ) )  →  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) )  <s   0s  ) | 
						
							| 96 |  | breq1 | ⊢ ( 𝑝  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) )  →  ( 𝑝  <s   0s   ↔  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) )  <s   0s  ) ) | 
						
							| 97 | 95 96 | syl5ibrcom | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝑥 ) )  →  ( 𝑝  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) )  →  𝑝  <s   0s  ) ) | 
						
							| 98 | 97 | rexlimdva | ⊢ ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  →  ( ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑝  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) )  →  𝑝  <s   0s  ) ) | 
						
							| 99 | 98 | imp | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑝  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) ) )  →  𝑝  <s   0s  ) | 
						
							| 100 |  | rightval | ⊢ (  R  ‘ 𝑥 )  =  { 𝑥𝑅  ∈  (  O  ‘ (  bday  ‘ 𝑥 ) )  ∣  𝑥  <s  𝑥𝑅 } | 
						
							| 101 | 100 | reqabi | ⊢ ( 𝑥𝑅  ∈  (  R  ‘ 𝑥 )  ↔  ( 𝑥𝑅  ∈  (  O  ‘ (  bday  ‘ 𝑥 ) )  ∧  𝑥  <s  𝑥𝑅 ) ) | 
						
							| 102 | 101 | simprbi | ⊢ ( 𝑥𝑅  ∈  (  R  ‘ 𝑥 )  →  𝑥  <s  𝑥𝑅 ) | 
						
							| 103 | 102 | adantl | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝑅  ∈  (  R  ‘ 𝑥 ) )  →  𝑥  <s  𝑥𝑅 ) | 
						
							| 104 | 52 54 55 | sltadd1d | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝑅  ∈  (  R  ‘ 𝑥 ) )  →  ( 𝑥  <s  𝑥𝑅  ↔  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) )  <s  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥𝑅 ) ) ) ) | 
						
							| 105 | 103 104 | mpbid | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝑅  ∈  (  R  ‘ 𝑥 ) )  →  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) )  <s  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥𝑅 ) ) ) | 
						
							| 106 |  | id | ⊢ ( 𝑥𝑂  =  𝑥𝑅  →  𝑥𝑂  =  𝑥𝑅 ) | 
						
							| 107 |  | fveq2 | ⊢ ( 𝑥𝑂  =  𝑥𝑅  →  (  -us  ‘ 𝑥𝑂 )  =  (  -us  ‘ 𝑥𝑅 ) ) | 
						
							| 108 | 106 107 | oveq12d | ⊢ ( 𝑥𝑂  =  𝑥𝑅  →  ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥𝑅 ) ) ) | 
						
							| 109 | 108 | eqeq1d | ⊢ ( 𝑥𝑂  =  𝑥𝑅  →  ( ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s   ↔  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥𝑅 ) )  =   0s  ) ) | 
						
							| 110 |  | simplr | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝑅  ∈  (  R  ‘ 𝑥 ) )  →  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  ) | 
						
							| 111 |  | elun2 | ⊢ ( 𝑥𝑅  ∈  (  R  ‘ 𝑥 )  →  𝑥𝑅  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ) | 
						
							| 112 | 111 | adantl | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝑅  ∈  (  R  ‘ 𝑥 ) )  →  𝑥𝑅  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ) | 
						
							| 113 | 109 110 112 | rspcdva | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝑅  ∈  (  R  ‘ 𝑥 ) )  →  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥𝑅 ) )  =   0s  ) | 
						
							| 114 | 105 113 | breqtrd | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝑅  ∈  (  R  ‘ 𝑥 ) )  →  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) )  <s   0s  ) | 
						
							| 115 |  | breq1 | ⊢ ( 𝑝  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) )  →  ( 𝑝  <s   0s   ↔  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) )  <s   0s  ) ) | 
						
							| 116 | 114 115 | syl5ibrcom | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝑅  ∈  (  R  ‘ 𝑥 ) )  →  ( 𝑝  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) )  →  𝑝  <s   0s  ) ) | 
						
							| 117 | 116 | rexlimdva | ⊢ ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  →  ( ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑝  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) )  →  𝑝  <s   0s  ) ) | 
						
							| 118 | 117 | imp | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑝  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) ) )  →  𝑝  <s   0s  ) | 
						
							| 119 | 99 118 | jaodan | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  ( ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑝  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) )  ∨  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑝  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) ) ) )  →  𝑝  <s   0s  ) | 
						
							| 120 |  | breq2 | ⊢ ( 𝑞  =   0s   →  ( 𝑝  <s  𝑞  ↔  𝑝  <s   0s  ) ) | 
						
							| 121 | 119 120 | syl5ibrcom | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  ( ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑝  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) )  ∨  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑝  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) ) ) )  →  ( 𝑞  =   0s   →  𝑝  <s  𝑞 ) ) | 
						
							| 122 | 121 | expimpd | ⊢ ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  →  ( ( ( ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑝  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) )  ∨  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑝  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) ) )  ∧  𝑞  =   0s  )  →  𝑝  <s  𝑞 ) ) | 
						
							| 123 | 76 122 | biimtrid | ⊢ ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  →  ( ( 𝑝  ∈  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) ) }  ∪  { 𝑏  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑏  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) ) } )  ∧  𝑞  ∈  {  0s  } )  →  𝑝  <s  𝑞 ) ) | 
						
							| 124 | 123 | 3impib | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑝  ∈  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) ) }  ∪  { 𝑏  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑏  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) ) } )  ∧  𝑞  ∈  {  0s  } )  →  𝑝  <s  𝑞 ) | 
						
							| 125 | 40 42 61 64 124 | ssltd | ⊢ ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  →  ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) ) }  ∪  { 𝑏  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑏  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) ) } )  <<s  {  0s  } ) | 
						
							| 126 | 37 | abrexex | ⊢ { 𝑐  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑐  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) ) }  ∈  V | 
						
							| 127 | 35 | abrexex | ⊢ { 𝑑  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑑  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) }  ∈  V | 
						
							| 128 | 126 127 | unex | ⊢ ( { 𝑐  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑐  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) ) }  ∪  { 𝑑  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑑  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) } )  ∈  V | 
						
							| 129 | 128 | a1i | ⊢ ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  →  ( { 𝑐  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑐  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) ) }  ∪  { 𝑑  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑑  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) } )  ∈  V ) | 
						
							| 130 | 52 | negscld | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝑅  ∈  (  R  ‘ 𝑥 ) )  →  (  -us  ‘ 𝑥 )  ∈   No  ) | 
						
							| 131 | 54 130 | addscld | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝑅  ∈  (  R  ‘ 𝑥 ) )  →  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) )  ∈   No  ) | 
						
							| 132 |  | eleq1 | ⊢ ( 𝑐  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) )  →  ( 𝑐  ∈   No   ↔  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) )  ∈   No  ) ) | 
						
							| 133 | 131 132 | syl5ibrcom | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝑅  ∈  (  R  ‘ 𝑥 ) )  →  ( 𝑐  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) )  →  𝑐  ∈   No  ) ) | 
						
							| 134 | 133 | rexlimdva | ⊢ ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  →  ( ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑐  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) )  →  𝑐  ∈   No  ) ) | 
						
							| 135 | 134 | abssdv | ⊢ ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  →  { 𝑐  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑐  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) ) }  ⊆   No  ) | 
						
							| 136 | 45 84 | addscld | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝑥 ) )  →  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) )  ∈   No  ) | 
						
							| 137 |  | eleq1 | ⊢ ( 𝑑  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) )  →  ( 𝑑  ∈   No   ↔  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) )  ∈   No  ) ) | 
						
							| 138 | 136 137 | syl5ibrcom | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝑥 ) )  →  ( 𝑑  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) )  →  𝑑  ∈   No  ) ) | 
						
							| 139 | 138 | rexlimdva | ⊢ ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  →  ( ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑑  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) )  →  𝑑  ∈   No  ) ) | 
						
							| 140 | 139 | abssdv | ⊢ ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  →  { 𝑑  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑑  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) }  ⊆   No  ) | 
						
							| 141 | 135 140 | unssd | ⊢ ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  →  ( { 𝑐  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑐  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) ) }  ∪  { 𝑑  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑑  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) } )  ⊆   No  ) | 
						
							| 142 |  | velsn | ⊢ ( 𝑝  ∈  {  0s  }  ↔  𝑝  =   0s  ) | 
						
							| 143 |  | elun | ⊢ ( 𝑞  ∈  ( { 𝑐  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑐  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) ) }  ∪  { 𝑑  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑑  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) } )  ↔  ( 𝑞  ∈  { 𝑐  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑐  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) ) }  ∨  𝑞  ∈  { 𝑑  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑑  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) } ) ) | 
						
							| 144 |  | vex | ⊢ 𝑞  ∈  V | 
						
							| 145 |  | eqeq1 | ⊢ ( 𝑐  =  𝑞  →  ( 𝑐  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) )  ↔  𝑞  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) ) ) ) | 
						
							| 146 | 145 | rexbidv | ⊢ ( 𝑐  =  𝑞  →  ( ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑐  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) )  ↔  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑞  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) ) ) ) | 
						
							| 147 | 144 146 | elab | ⊢ ( 𝑞  ∈  { 𝑐  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑐  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) ) }  ↔  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑞  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) ) ) | 
						
							| 148 |  | eqeq1 | ⊢ ( 𝑑  =  𝑞  →  ( 𝑑  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) )  ↔  𝑞  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) ) ) | 
						
							| 149 | 148 | rexbidv | ⊢ ( 𝑑  =  𝑞  →  ( ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑑  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) )  ↔  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑞  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) ) ) | 
						
							| 150 | 144 149 | elab | ⊢ ( 𝑞  ∈  { 𝑑  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑑  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) }  ↔  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑞  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) ) | 
						
							| 151 | 147 150 | orbi12i | ⊢ ( ( 𝑞  ∈  { 𝑐  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑐  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) ) }  ∨  𝑞  ∈  { 𝑑  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑑  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) } )  ↔  ( ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑞  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) )  ∨  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑞  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) ) ) | 
						
							| 152 | 143 151 | bitri | ⊢ ( 𝑞  ∈  ( { 𝑐  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑐  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) ) }  ∪  { 𝑑  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑑  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) } )  ↔  ( ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑞  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) )  ∨  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑞  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) ) ) | 
						
							| 153 | 142 152 | anbi12i | ⊢ ( ( 𝑝  ∈  {  0s  }  ∧  𝑞  ∈  ( { 𝑐  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑐  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) ) }  ∪  { 𝑑  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑑  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) } ) )  ↔  ( 𝑝  =   0s   ∧  ( ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑞  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) )  ∨  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑞  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) ) ) ) | 
						
							| 154 |  | sltnegim | ⊢ ( ( 𝑥  ∈   No   ∧  𝑥𝑅  ∈   No  )  →  ( 𝑥  <s  𝑥𝑅  →  (  -us  ‘ 𝑥𝑅 )  <s  (  -us  ‘ 𝑥 ) ) ) | 
						
							| 155 | 52 54 154 | syl2anc | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝑅  ∈  (  R  ‘ 𝑥 ) )  →  ( 𝑥  <s  𝑥𝑅  →  (  -us  ‘ 𝑥𝑅 )  <s  (  -us  ‘ 𝑥 ) ) ) | 
						
							| 156 | 103 155 | mpd | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝑅  ∈  (  R  ‘ 𝑥 ) )  →  (  -us  ‘ 𝑥𝑅 )  <s  (  -us  ‘ 𝑥 ) ) | 
						
							| 157 | 55 130 54 | sltadd2d | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝑅  ∈  (  R  ‘ 𝑥 ) )  →  ( (  -us  ‘ 𝑥𝑅 )  <s  (  -us  ‘ 𝑥 )  ↔  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥𝑅 ) )  <s  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) ) ) ) | 
						
							| 158 | 156 157 | mpbid | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝑅  ∈  (  R  ‘ 𝑥 ) )  →  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥𝑅 ) )  <s  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) ) ) | 
						
							| 159 | 113 158 | eqbrtrrd | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝑅  ∈  (  R  ‘ 𝑥 ) )  →   0s   <s  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) ) ) | 
						
							| 160 |  | breq2 | ⊢ ( 𝑞  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) )  →  (  0s   <s  𝑞  ↔   0s   <s  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) ) ) ) | 
						
							| 161 | 159 160 | syl5ibrcom | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝑅  ∈  (  R  ‘ 𝑥 ) )  →  ( 𝑞  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) )  →   0s   <s  𝑞 ) ) | 
						
							| 162 | 161 | rexlimdva | ⊢ ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  →  ( ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑞  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) )  →   0s   <s  𝑞 ) ) | 
						
							| 163 | 162 | imp | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑞  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) ) )  →   0s   <s  𝑞 ) | 
						
							| 164 | 44 45 84 | sltadd1d | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝑥 ) )  →  ( 𝑥𝐿  <s  𝑥  ↔  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥𝐿 ) )  <s  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) ) ) | 
						
							| 165 | 80 164 | mpbid | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝑥 ) )  →  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥𝐿 ) )  <s  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) ) | 
						
							| 166 | 94 165 | eqbrtrrd | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝑥 ) )  →   0s   <s  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) ) | 
						
							| 167 |  | breq2 | ⊢ ( 𝑞  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) )  →  (  0s   <s  𝑞  ↔   0s   <s  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) ) ) | 
						
							| 168 | 166 167 | syl5ibrcom | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝑥 ) )  →  ( 𝑞  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) )  →   0s   <s  𝑞 ) ) | 
						
							| 169 | 168 | rexlimdva | ⊢ ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  →  ( ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑞  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) )  →   0s   <s  𝑞 ) ) | 
						
							| 170 | 169 | imp | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑞  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) )  →   0s   <s  𝑞 ) | 
						
							| 171 | 163 170 | jaodan | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  ( ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑞  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) )  ∨  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑞  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) ) )  →   0s   <s  𝑞 ) | 
						
							| 172 |  | breq1 | ⊢ ( 𝑝  =   0s   →  ( 𝑝  <s  𝑞  ↔   0s   <s  𝑞 ) ) | 
						
							| 173 | 171 172 | syl5ibrcom | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  ( ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑞  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) )  ∨  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑞  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) ) )  →  ( 𝑝  =   0s   →  𝑝  <s  𝑞 ) ) | 
						
							| 174 | 173 | ex | ⊢ ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  →  ( ( ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑞  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) )  ∨  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑞  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) )  →  ( 𝑝  =   0s   →  𝑝  <s  𝑞 ) ) ) | 
						
							| 175 | 174 | impcomd | ⊢ ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  →  ( ( 𝑝  =   0s   ∧  ( ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑞  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) )  ∨  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑞  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) ) )  →  𝑝  <s  𝑞 ) ) | 
						
							| 176 | 153 175 | biimtrid | ⊢ ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  →  ( ( 𝑝  ∈  {  0s  }  ∧  𝑞  ∈  ( { 𝑐  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑐  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) ) }  ∪  { 𝑑  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑑  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) } ) )  →  𝑝  <s  𝑞 ) ) | 
						
							| 177 | 176 | 3impib | ⊢ ( ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  ∧  𝑝  ∈  {  0s  }  ∧  𝑞  ∈  ( { 𝑐  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑐  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) ) }  ∪  { 𝑑  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑑  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) } ) )  →  𝑝  <s  𝑞 ) | 
						
							| 178 | 42 129 64 141 177 | ssltd | ⊢ ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  →  {  0s  }  <<s  ( { 𝑐  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑐  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) ) }  ∪  { 𝑑  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑑  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) } ) ) | 
						
							| 179 | 125 178 | cuteq0 | ⊢ ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  →  ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) ) }  ∪  { 𝑏  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑏  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝑅 ) ) } )  |s  ( { 𝑐  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑐  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) ) }  ∪  { 𝑑  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑑  =  ( 𝑥  +s  (  -us  ‘ 𝑥𝐿 ) ) } ) )  =   0s  ) | 
						
							| 180 | 34 179 | eqtrid | ⊢ ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  →  ( ( { 𝑎  ∣  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝑥 ) 𝑎  =  ( 𝑥𝐿  +s  (  -us  ‘ 𝑥 ) ) }  ∪  { 𝑏  ∣  ∃ 𝑝  ∈  (  -us   “  (  R  ‘ 𝑥 ) ) 𝑏  =  ( 𝑥  +s  𝑝 ) } )  |s  ( { 𝑐  ∣  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝑥 ) 𝑐  =  ( 𝑥𝑅  +s  (  -us  ‘ 𝑥 ) ) }  ∪  { 𝑑  ∣  ∃ 𝑞  ∈  (  -us   “  (  L  ‘ 𝑥 ) ) 𝑑  =  ( 𝑥  +s  𝑞 ) } ) )  =   0s  ) | 
						
							| 181 | 18 180 | eqtrd | ⊢ ( ( 𝑥  ∈   No   ∧  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s  )  →  ( 𝑥  +s  (  -us  ‘ 𝑥 ) )  =   0s  ) | 
						
							| 182 | 181 | ex | ⊢ ( 𝑥  ∈   No   →  ( ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝑥 )  ∪  (  R  ‘ 𝑥 ) ) ( 𝑥𝑂  +s  (  -us  ‘ 𝑥𝑂 ) )  =   0s   →  ( 𝑥  +s  (  -us  ‘ 𝑥 ) )  =   0s  ) ) | 
						
							| 183 | 4 8 182 | noinds | ⊢ ( 𝐴  ∈   No   →  ( 𝐴  +s  (  -us  ‘ 𝐴 ) )  =   0s  ) |