Metamath Proof Explorer


Theorem negsid

Description: Surreal addition of a number and its negative. Theorem 4(iii) of Conway p. 17. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Assertion negsid ( 𝐴 No → ( 𝐴 +s ( -us𝐴 ) ) = 0s )

Proof

Step Hyp Ref Expression
1 id ( 𝑥 = 𝑥𝑂𝑥 = 𝑥𝑂 )
2 fveq2 ( 𝑥 = 𝑥𝑂 → ( -us𝑥 ) = ( -us𝑥𝑂 ) )
3 1 2 oveq12d ( 𝑥 = 𝑥𝑂 → ( 𝑥 +s ( -us𝑥 ) ) = ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) )
4 3 eqeq1d ( 𝑥 = 𝑥𝑂 → ( ( 𝑥 +s ( -us𝑥 ) ) = 0s ↔ ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) )
5 id ( 𝑥 = 𝐴𝑥 = 𝐴 )
6 fveq2 ( 𝑥 = 𝐴 → ( -us𝑥 ) = ( -us𝐴 ) )
7 5 6 oveq12d ( 𝑥 = 𝐴 → ( 𝑥 +s ( -us𝑥 ) ) = ( 𝐴 +s ( -us𝐴 ) ) )
8 7 eqeq1d ( 𝑥 = 𝐴 → ( ( 𝑥 +s ( -us𝑥 ) ) = 0s ↔ ( 𝐴 +s ( -us𝐴 ) ) = 0s ) )
9 lltropt ( L ‘ 𝑥 ) <<s ( R ‘ 𝑥 )
10 9 a1i ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( L ‘ 𝑥 ) <<s ( R ‘ 𝑥 ) )
11 negscut2 ( 𝑥 No → ( -us “ ( R ‘ 𝑥 ) ) <<s ( -us “ ( L ‘ 𝑥 ) ) )
12 11 adantr ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( -us “ ( R ‘ 𝑥 ) ) <<s ( -us “ ( L ‘ 𝑥 ) ) )
13 lrcut ( 𝑥 No → ( ( L ‘ 𝑥 ) |s ( R ‘ 𝑥 ) ) = 𝑥 )
14 13 adantr ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( ( L ‘ 𝑥 ) |s ( R ‘ 𝑥 ) ) = 𝑥 )
15 14 eqcomd ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → 𝑥 = ( ( L ‘ 𝑥 ) |s ( R ‘ 𝑥 ) ) )
16 negsval ( 𝑥 No → ( -us𝑥 ) = ( ( -us “ ( R ‘ 𝑥 ) ) |s ( -us “ ( L ‘ 𝑥 ) ) ) )
17 16 adantr ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( -us𝑥 ) = ( ( -us “ ( R ‘ 𝑥 ) ) |s ( -us “ ( L ‘ 𝑥 ) ) ) )
18 10 12 15 17 addsunif ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( 𝑥 +s ( -us𝑥 ) ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑝 ∈ ( -us “ ( R ‘ 𝑥 ) ) 𝑏 = ( 𝑥 +s 𝑝 ) } ) |s ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑞 ∈ ( -us “ ( L ‘ 𝑥 ) ) 𝑑 = ( 𝑥 +s 𝑞 ) } ) ) )
19 negsfn -us Fn No
20 rightssno ( R ‘ 𝑥 ) ⊆ No
21 oveq2 ( 𝑝 = ( -us𝑥𝑅 ) → ( 𝑥 +s 𝑝 ) = ( 𝑥 +s ( -us𝑥𝑅 ) ) )
22 21 eqeq2d ( 𝑝 = ( -us𝑥𝑅 ) → ( 𝑏 = ( 𝑥 +s 𝑝 ) ↔ 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) ) )
23 22 rexima ( ( -us Fn No ∧ ( R ‘ 𝑥 ) ⊆ No ) → ( ∃ 𝑝 ∈ ( -us “ ( R ‘ 𝑥 ) ) 𝑏 = ( 𝑥 +s 𝑝 ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) ) )
24 19 20 23 mp2an ( ∃ 𝑝 ∈ ( -us “ ( R ‘ 𝑥 ) ) 𝑏 = ( 𝑥 +s 𝑝 ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) )
25 24 abbii { 𝑏 ∣ ∃ 𝑝 ∈ ( -us “ ( R ‘ 𝑥 ) ) 𝑏 = ( 𝑥 +s 𝑝 ) } = { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) }
26 25 uneq2i ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑝 ∈ ( -us “ ( R ‘ 𝑥 ) ) 𝑏 = ( 𝑥 +s 𝑝 ) } ) = ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) } )
27 leftssno ( L ‘ 𝑥 ) ⊆ No
28 oveq2 ( 𝑞 = ( -us𝑥𝐿 ) → ( 𝑥 +s 𝑞 ) = ( 𝑥 +s ( -us𝑥𝐿 ) ) )
29 28 eqeq2d ( 𝑞 = ( -us𝑥𝐿 ) → ( 𝑑 = ( 𝑥 +s 𝑞 ) ↔ 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) ) )
30 29 rexima ( ( -us Fn No ∧ ( L ‘ 𝑥 ) ⊆ No ) → ( ∃ 𝑞 ∈ ( -us “ ( L ‘ 𝑥 ) ) 𝑑 = ( 𝑥 +s 𝑞 ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) ) )
31 19 27 30 mp2an ( ∃ 𝑞 ∈ ( -us “ ( L ‘ 𝑥 ) ) 𝑑 = ( 𝑥 +s 𝑞 ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) )
32 31 abbii { 𝑑 ∣ ∃ 𝑞 ∈ ( -us “ ( L ‘ 𝑥 ) ) 𝑑 = ( 𝑥 +s 𝑞 ) } = { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) }
33 32 uneq2i ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑞 ∈ ( -us “ ( L ‘ 𝑥 ) ) 𝑑 = ( 𝑥 +s 𝑞 ) } ) = ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) } )
34 26 33 oveq12i ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑝 ∈ ( -us “ ( R ‘ 𝑥 ) ) 𝑏 = ( 𝑥 +s 𝑝 ) } ) |s ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑞 ∈ ( -us “ ( L ‘ 𝑥 ) ) 𝑑 = ( 𝑥 +s 𝑞 ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) } ) )
35 fvex ( L ‘ 𝑥 ) ∈ V
36 35 abrexex { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∈ V
37 fvex ( R ‘ 𝑥 ) ∈ V
38 37 abrexex { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) } ∈ V
39 36 38 unex ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) } ) ∈ V
40 39 a1i ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) } ) ∈ V )
41 snex { 0s } ∈ V
42 41 a1i ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → { 0s } ∈ V )
43 27 sseli ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) → 𝑥𝐿 No )
44 43 adantl ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → 𝑥𝐿 No )
45 simpll ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → 𝑥 No )
46 45 negscld ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( -us𝑥 ) ∈ No )
47 44 46 addscld ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑥𝐿 +s ( -us𝑥 ) ) ∈ No )
48 eleq1 ( 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) → ( 𝑎 No ↔ ( 𝑥𝐿 +s ( -us𝑥 ) ) ∈ No ) )
49 47 48 syl5ibrcom ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) → 𝑎 No ) )
50 49 rexlimdva ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) → 𝑎 No ) )
51 50 abssdv ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ⊆ No )
52 simpll ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → 𝑥 No )
53 20 sseli ( 𝑥𝑅 ∈ ( R ‘ 𝑥 ) → 𝑥𝑅 No )
54 53 adantl ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → 𝑥𝑅 No )
55 54 negscld ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( -us𝑥𝑅 ) ∈ No )
56 52 55 addscld ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑥 +s ( -us𝑥𝑅 ) ) ∈ No )
57 eleq1 ( 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) → ( 𝑏 No ↔ ( 𝑥 +s ( -us𝑥𝑅 ) ) ∈ No ) )
58 56 57 syl5ibrcom ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) → 𝑏 No ) )
59 58 rexlimdva ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) → 𝑏 No ) )
60 59 abssdv ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) } ⊆ No )
61 51 60 unssd ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) } ) ⊆ No )
62 0sno 0s No
63 snssi ( 0s No → { 0s } ⊆ No )
64 62 63 mp1i ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → { 0s } ⊆ No )
65 elun ( 𝑝 ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) } ) ↔ ( 𝑝 ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∨ 𝑝 ∈ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) } ) )
66 vex 𝑝 ∈ V
67 eqeq1 ( 𝑎 = 𝑝 → ( 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) ↔ 𝑝 = ( 𝑥𝐿 +s ( -us𝑥 ) ) ) )
68 67 rexbidv ( 𝑎 = 𝑝 → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑝 = ( 𝑥𝐿 +s ( -us𝑥 ) ) ) )
69 66 68 elab ( 𝑝 ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑝 = ( 𝑥𝐿 +s ( -us𝑥 ) ) )
70 eqeq1 ( 𝑏 = 𝑝 → ( 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) ↔ 𝑝 = ( 𝑥 +s ( -us𝑥𝑅 ) ) ) )
71 70 rexbidv ( 𝑏 = 𝑝 → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑝 = ( 𝑥 +s ( -us𝑥𝑅 ) ) ) )
72 66 71 elab ( 𝑝 ∈ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) } ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑝 = ( 𝑥 +s ( -us𝑥𝑅 ) ) )
73 69 72 orbi12i ( ( 𝑝 ∈ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∨ 𝑝 ∈ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) } ) ↔ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑝 = ( 𝑥𝐿 +s ( -us𝑥 ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑝 = ( 𝑥 +s ( -us𝑥𝑅 ) ) ) )
74 65 73 bitri ( 𝑝 ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) } ) ↔ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑝 = ( 𝑥𝐿 +s ( -us𝑥 ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑝 = ( 𝑥 +s ( -us𝑥𝑅 ) ) ) )
75 velsn ( 𝑞 ∈ { 0s } ↔ 𝑞 = 0s )
76 74 75 anbi12i ( ( 𝑝 ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) } ) ∧ 𝑞 ∈ { 0s } ) ↔ ( ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑝 = ( 𝑥𝐿 +s ( -us𝑥 ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑝 = ( 𝑥 +s ( -us𝑥𝑅 ) ) ) ∧ 𝑞 = 0s ) )
77 leftlt ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) → 𝑥𝐿 <s 𝑥 )
78 77 adantl ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → 𝑥𝐿 <s 𝑥 )
79 sltnegim ( ( 𝑥𝐿 No 𝑥 No ) → ( 𝑥𝐿 <s 𝑥 → ( -us𝑥 ) <s ( -us𝑥𝐿 ) ) )
80 44 45 79 syl2anc ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑥𝐿 <s 𝑥 → ( -us𝑥 ) <s ( -us𝑥𝐿 ) ) )
81 78 80 mpd ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( -us𝑥 ) <s ( -us𝑥𝐿 ) )
82 44 negscld ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( -us𝑥𝐿 ) ∈ No )
83 46 82 44 sltadd2d ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( ( -us𝑥 ) <s ( -us𝑥𝐿 ) ↔ ( 𝑥𝐿 +s ( -us𝑥 ) ) <s ( 𝑥𝐿 +s ( -us𝑥𝐿 ) ) ) )
84 81 83 mpbid ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑥𝐿 +s ( -us𝑥 ) ) <s ( 𝑥𝐿 +s ( -us𝑥𝐿 ) ) )
85 id ( 𝑥𝑂 = 𝑥𝐿𝑥𝑂 = 𝑥𝐿 )
86 fveq2 ( 𝑥𝑂 = 𝑥𝐿 → ( -us𝑥𝑂 ) = ( -us𝑥𝐿 ) )
87 85 86 oveq12d ( 𝑥𝑂 = 𝑥𝐿 → ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = ( 𝑥𝐿 +s ( -us𝑥𝐿 ) ) )
88 87 eqeq1d ( 𝑥𝑂 = 𝑥𝐿 → ( ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ↔ ( 𝑥𝐿 +s ( -us𝑥𝐿 ) ) = 0s ) )
89 simplr ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s )
90 elun1 ( 𝑥𝐿 ∈ ( L ‘ 𝑥 ) → 𝑥𝐿 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) )
91 90 adantl ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → 𝑥𝐿 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) )
92 88 89 91 rspcdva ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑥𝐿 +s ( -us𝑥𝐿 ) ) = 0s )
93 84 92 breqtrd ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑥𝐿 +s ( -us𝑥 ) ) <s 0s )
94 breq1 ( 𝑝 = ( 𝑥𝐿 +s ( -us𝑥 ) ) → ( 𝑝 <s 0s ↔ ( 𝑥𝐿 +s ( -us𝑥 ) ) <s 0s ) )
95 93 94 syl5ibrcom ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑝 = ( 𝑥𝐿 +s ( -us𝑥 ) ) → 𝑝 <s 0s ) )
96 95 rexlimdva ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑝 = ( 𝑥𝐿 +s ( -us𝑥 ) ) → 𝑝 <s 0s ) )
97 96 imp ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑝 = ( 𝑥𝐿 +s ( -us𝑥 ) ) ) → 𝑝 <s 0s )
98 rightgt ( 𝑥𝑅 ∈ ( R ‘ 𝑥 ) → 𝑥 <s 𝑥𝑅 )
99 98 adantl ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → 𝑥 <s 𝑥𝑅 )
100 52 54 55 sltadd1d ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑥 <s 𝑥𝑅 ↔ ( 𝑥 +s ( -us𝑥𝑅 ) ) <s ( 𝑥𝑅 +s ( -us𝑥𝑅 ) ) ) )
101 99 100 mpbid ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑥 +s ( -us𝑥𝑅 ) ) <s ( 𝑥𝑅 +s ( -us𝑥𝑅 ) ) )
102 id ( 𝑥𝑂 = 𝑥𝑅𝑥𝑂 = 𝑥𝑅 )
103 fveq2 ( 𝑥𝑂 = 𝑥𝑅 → ( -us𝑥𝑂 ) = ( -us𝑥𝑅 ) )
104 102 103 oveq12d ( 𝑥𝑂 = 𝑥𝑅 → ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = ( 𝑥𝑅 +s ( -us𝑥𝑅 ) ) )
105 104 eqeq1d ( 𝑥𝑂 = 𝑥𝑅 → ( ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ↔ ( 𝑥𝑅 +s ( -us𝑥𝑅 ) ) = 0s ) )
106 simplr ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s )
107 elun2 ( 𝑥𝑅 ∈ ( R ‘ 𝑥 ) → 𝑥𝑅 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) )
108 107 adantl ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → 𝑥𝑅 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) )
109 105 106 108 rspcdva ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑥𝑅 +s ( -us𝑥𝑅 ) ) = 0s )
110 101 109 breqtrd ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑥 +s ( -us𝑥𝑅 ) ) <s 0s )
111 breq1 ( 𝑝 = ( 𝑥 +s ( -us𝑥𝑅 ) ) → ( 𝑝 <s 0s ↔ ( 𝑥 +s ( -us𝑥𝑅 ) ) <s 0s ) )
112 110 111 syl5ibrcom ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑝 = ( 𝑥 +s ( -us𝑥𝑅 ) ) → 𝑝 <s 0s ) )
113 112 rexlimdva ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑝 = ( 𝑥 +s ( -us𝑥𝑅 ) ) → 𝑝 <s 0s ) )
114 113 imp ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑝 = ( 𝑥 +s ( -us𝑥𝑅 ) ) ) → 𝑝 <s 0s )
115 97 114 jaodan ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑝 = ( 𝑥𝐿 +s ( -us𝑥 ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑝 = ( 𝑥 +s ( -us𝑥𝑅 ) ) ) ) → 𝑝 <s 0s )
116 breq2 ( 𝑞 = 0s → ( 𝑝 <s 𝑞𝑝 <s 0s ) )
117 115 116 syl5ibrcom ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑝 = ( 𝑥𝐿 +s ( -us𝑥 ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑝 = ( 𝑥 +s ( -us𝑥𝑅 ) ) ) ) → ( 𝑞 = 0s𝑝 <s 𝑞 ) )
118 117 expimpd ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( ( ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑝 = ( 𝑥𝐿 +s ( -us𝑥 ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑝 = ( 𝑥 +s ( -us𝑥𝑅 ) ) ) ∧ 𝑞 = 0s ) → 𝑝 <s 𝑞 ) )
119 76 118 biimtrid ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( ( 𝑝 ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) } ) ∧ 𝑞 ∈ { 0s } ) → 𝑝 <s 𝑞 ) )
120 119 3impib ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑝 ∈ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) } ) ∧ 𝑞 ∈ { 0s } ) → 𝑝 <s 𝑞 )
121 40 42 61 64 120 ssltd ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) } ) <<s { 0s } )
122 37 abrexex { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∈ V
123 35 abrexex { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) } ∈ V
124 122 123 unex ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) } ) ∈ V
125 124 a1i ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) } ) ∈ V )
126 52 negscld ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( -us𝑥 ) ∈ No )
127 54 126 addscld ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑥𝑅 +s ( -us𝑥 ) ) ∈ No )
128 eleq1 ( 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) → ( 𝑐 No ↔ ( 𝑥𝑅 +s ( -us𝑥 ) ) ∈ No ) )
129 127 128 syl5ibrcom ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) → 𝑐 No ) )
130 129 rexlimdva ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) → 𝑐 No ) )
131 130 abssdv ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ⊆ No )
132 45 82 addscld ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑥 +s ( -us𝑥𝐿 ) ) ∈ No )
133 eleq1 ( 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) → ( 𝑑 No ↔ ( 𝑥 +s ( -us𝑥𝐿 ) ) ∈ No ) )
134 132 133 syl5ibrcom ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) → 𝑑 No ) )
135 134 rexlimdva ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) → 𝑑 No ) )
136 135 abssdv ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) } ⊆ No )
137 131 136 unssd ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) } ) ⊆ No )
138 velsn ( 𝑝 ∈ { 0s } ↔ 𝑝 = 0s )
139 elun ( 𝑞 ∈ ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) } ) ↔ ( 𝑞 ∈ { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∨ 𝑞 ∈ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) } ) )
140 vex 𝑞 ∈ V
141 eqeq1 ( 𝑐 = 𝑞 → ( 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) ↔ 𝑞 = ( 𝑥𝑅 +s ( -us𝑥 ) ) ) )
142 141 rexbidv ( 𝑐 = 𝑞 → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑞 = ( 𝑥𝑅 +s ( -us𝑥 ) ) ) )
143 140 142 elab ( 𝑞 ∈ { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑞 = ( 𝑥𝑅 +s ( -us𝑥 ) ) )
144 eqeq1 ( 𝑑 = 𝑞 → ( 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) ↔ 𝑞 = ( 𝑥 +s ( -us𝑥𝐿 ) ) ) )
145 144 rexbidv ( 𝑑 = 𝑞 → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑞 = ( 𝑥 +s ( -us𝑥𝐿 ) ) ) )
146 140 145 elab ( 𝑞 ∈ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) } ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑞 = ( 𝑥 +s ( -us𝑥𝐿 ) ) )
147 143 146 orbi12i ( ( 𝑞 ∈ { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∨ 𝑞 ∈ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) } ) ↔ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑞 = ( 𝑥𝑅 +s ( -us𝑥 ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑞 = ( 𝑥 +s ( -us𝑥𝐿 ) ) ) )
148 139 147 bitri ( 𝑞 ∈ ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) } ) ↔ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑞 = ( 𝑥𝑅 +s ( -us𝑥 ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑞 = ( 𝑥 +s ( -us𝑥𝐿 ) ) ) )
149 138 148 anbi12i ( ( 𝑝 ∈ { 0s } ∧ 𝑞 ∈ ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) } ) ) ↔ ( 𝑝 = 0s ∧ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑞 = ( 𝑥𝑅 +s ( -us𝑥 ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑞 = ( 𝑥 +s ( -us𝑥𝐿 ) ) ) ) )
150 sltnegim ( ( 𝑥 No 𝑥𝑅 No ) → ( 𝑥 <s 𝑥𝑅 → ( -us𝑥𝑅 ) <s ( -us𝑥 ) ) )
151 52 54 150 syl2anc ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑥 <s 𝑥𝑅 → ( -us𝑥𝑅 ) <s ( -us𝑥 ) ) )
152 99 151 mpd ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( -us𝑥𝑅 ) <s ( -us𝑥 ) )
153 55 126 54 sltadd2d ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( ( -us𝑥𝑅 ) <s ( -us𝑥 ) ↔ ( 𝑥𝑅 +s ( -us𝑥𝑅 ) ) <s ( 𝑥𝑅 +s ( -us𝑥 ) ) ) )
154 152 153 mpbid ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑥𝑅 +s ( -us𝑥𝑅 ) ) <s ( 𝑥𝑅 +s ( -us𝑥 ) ) )
155 109 154 eqbrtrrd ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → 0s <s ( 𝑥𝑅 +s ( -us𝑥 ) ) )
156 breq2 ( 𝑞 = ( 𝑥𝑅 +s ( -us𝑥 ) ) → ( 0s <s 𝑞 ↔ 0s <s ( 𝑥𝑅 +s ( -us𝑥 ) ) ) )
157 155 156 syl5ibrcom ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ) → ( 𝑞 = ( 𝑥𝑅 +s ( -us𝑥 ) ) → 0s <s 𝑞 ) )
158 157 rexlimdva ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑞 = ( 𝑥𝑅 +s ( -us𝑥 ) ) → 0s <s 𝑞 ) )
159 158 imp ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑞 = ( 𝑥𝑅 +s ( -us𝑥 ) ) ) → 0s <s 𝑞 )
160 44 45 82 sltadd1d ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑥𝐿 <s 𝑥 ↔ ( 𝑥𝐿 +s ( -us𝑥𝐿 ) ) <s ( 𝑥 +s ( -us𝑥𝐿 ) ) ) )
161 78 160 mpbid ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑥𝐿 +s ( -us𝑥𝐿 ) ) <s ( 𝑥 +s ( -us𝑥𝐿 ) ) )
162 92 161 eqbrtrrd ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → 0s <s ( 𝑥 +s ( -us𝑥𝐿 ) ) )
163 breq2 ( 𝑞 = ( 𝑥 +s ( -us𝑥𝐿 ) ) → ( 0s <s 𝑞 ↔ 0s <s ( 𝑥 +s ( -us𝑥𝐿 ) ) ) )
164 162 163 syl5ibrcom ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ) → ( 𝑞 = ( 𝑥 +s ( -us𝑥𝐿 ) ) → 0s <s 𝑞 ) )
165 164 rexlimdva ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑞 = ( 𝑥 +s ( -us𝑥𝐿 ) ) → 0s <s 𝑞 ) )
166 165 imp ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑞 = ( 𝑥 +s ( -us𝑥𝐿 ) ) ) → 0s <s 𝑞 )
167 159 166 jaodan ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑞 = ( 𝑥𝑅 +s ( -us𝑥 ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑞 = ( 𝑥 +s ( -us𝑥𝐿 ) ) ) ) → 0s <s 𝑞 )
168 breq1 ( 𝑝 = 0s → ( 𝑝 <s 𝑞 ↔ 0s <s 𝑞 ) )
169 167 168 syl5ibrcom ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑞 = ( 𝑥𝑅 +s ( -us𝑥 ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑞 = ( 𝑥 +s ( -us𝑥𝐿 ) ) ) ) → ( 𝑝 = 0s𝑝 <s 𝑞 ) )
170 169 ex ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑞 = ( 𝑥𝑅 +s ( -us𝑥 ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑞 = ( 𝑥 +s ( -us𝑥𝐿 ) ) ) → ( 𝑝 = 0s𝑝 <s 𝑞 ) ) )
171 170 impcomd ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( ( 𝑝 = 0s ∧ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑞 = ( 𝑥𝑅 +s ( -us𝑥 ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑞 = ( 𝑥 +s ( -us𝑥𝐿 ) ) ) ) → 𝑝 <s 𝑞 ) )
172 149 171 biimtrid ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( ( 𝑝 ∈ { 0s } ∧ 𝑞 ∈ ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) } ) ) → 𝑝 <s 𝑞 ) )
173 172 3impib ( ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) ∧ 𝑝 ∈ { 0s } ∧ 𝑞 ∈ ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) } ) ) → 𝑝 <s 𝑞 )
174 42 125 64 137 173 ssltd ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → { 0s } <<s ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) } ) )
175 121 174 cuteq0 ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑏 = ( 𝑥 +s ( -us𝑥𝑅 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑑 = ( 𝑥 +s ( -us𝑥𝐿 ) ) } ) ) = 0s )
176 34 175 eqtrid ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) 𝑎 = ( 𝑥𝐿 +s ( -us𝑥 ) ) } ∪ { 𝑏 ∣ ∃ 𝑝 ∈ ( -us “ ( R ‘ 𝑥 ) ) 𝑏 = ( 𝑥 +s 𝑝 ) } ) |s ( { 𝑐 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) 𝑐 = ( 𝑥𝑅 +s ( -us𝑥 ) ) } ∪ { 𝑑 ∣ ∃ 𝑞 ∈ ( -us “ ( L ‘ 𝑥 ) ) 𝑑 = ( 𝑥 +s 𝑞 ) } ) ) = 0s )
177 18 176 eqtrd ( ( 𝑥 No ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s ) → ( 𝑥 +s ( -us𝑥 ) ) = 0s )
178 177 ex ( 𝑥 No → ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( 𝑥𝑂 +s ( -us𝑥𝑂 ) ) = 0s → ( 𝑥 +s ( -us𝑥 ) ) = 0s ) )
179 4 8 178 noinds ( 𝐴 No → ( 𝐴 +s ( -us𝐴 ) ) = 0s )