Metamath Proof Explorer
		
		
		
		Description:  The forward direction of the ordering properties of negation.
     (Contributed by Scott Fenton, 3-Feb-2025)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | sltnegim | ⊢  ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝐴  <s  𝐵  →  (  -us  ‘ 𝐵 )  <s  (  -us  ‘ 𝐴 ) ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negsprop | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( (  -us  ‘ 𝐴 )  ∈   No   ∧  ( 𝐴  <s  𝐵  →  (  -us  ‘ 𝐵 )  <s  (  -us  ‘ 𝐴 ) ) ) ) | 
						
							| 2 | 1 | simprd | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝐴  <s  𝐵  →  (  -us  ‘ 𝐵 )  <s  (  -us  ‘ 𝐴 ) ) ) |