| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bdayelon | ⊢ (  bday  ‘ 𝐴 )  ∈  On | 
						
							| 2 |  | bdayelon | ⊢ (  bday  ‘ 𝐵 )  ∈  On | 
						
							| 3 | 1 2 | onun2i | ⊢ ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) )  ∈  On | 
						
							| 4 |  | risset | ⊢ ( ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) )  ∈  On  ↔  ∃ 𝑎  ∈  On 𝑎  =  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) ) ) | 
						
							| 5 | 3 4 | mpbi | ⊢ ∃ 𝑎  ∈  On 𝑎  =  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) ) | 
						
							| 6 |  | eqeq1 | ⊢ ( 𝑎  =  𝑏  →  ( 𝑎  =  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  ↔  𝑏  =  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) ) ) ) | 
						
							| 7 | 6 | imbi1d | ⊢ ( 𝑎  =  𝑏  →  ( ( 𝑎  =  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( (  -us  ‘ 𝑝 )  ∈   No   ∧  ( 𝑝  <s  𝑞  →  (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝑝 ) ) ) )  ↔  ( 𝑏  =  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( (  -us  ‘ 𝑝 )  ∈   No   ∧  ( 𝑝  <s  𝑞  →  (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝑝 ) ) ) ) ) ) | 
						
							| 8 | 7 | 2ralbidv | ⊢ ( 𝑎  =  𝑏  →  ( ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ( 𝑎  =  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( (  -us  ‘ 𝑝 )  ∈   No   ∧  ( 𝑝  <s  𝑞  →  (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝑝 ) ) ) )  ↔  ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ( 𝑏  =  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( (  -us  ‘ 𝑝 )  ∈   No   ∧  ( 𝑝  <s  𝑞  →  (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝑝 ) ) ) ) ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑝  =  𝑥  →  (  bday  ‘ 𝑝 )  =  (  bday  ‘ 𝑥 ) ) | 
						
							| 10 | 9 | uneq1d | ⊢ ( 𝑝  =  𝑥  →  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  =  ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑞 ) ) ) | 
						
							| 11 | 10 | eqeq2d | ⊢ ( 𝑝  =  𝑥  →  ( 𝑏  =  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  ↔  𝑏  =  ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑞 ) ) ) ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝑝  =  𝑥  →  (  -us  ‘ 𝑝 )  =  (  -us  ‘ 𝑥 ) ) | 
						
							| 13 | 12 | eleq1d | ⊢ ( 𝑝  =  𝑥  →  ( (  -us  ‘ 𝑝 )  ∈   No   ↔  (  -us  ‘ 𝑥 )  ∈   No  ) ) | 
						
							| 14 |  | breq1 | ⊢ ( 𝑝  =  𝑥  →  ( 𝑝  <s  𝑞  ↔  𝑥  <s  𝑞 ) ) | 
						
							| 15 | 12 | breq2d | ⊢ ( 𝑝  =  𝑥  →  ( (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝑝 )  ↔  (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝑥 ) ) ) | 
						
							| 16 | 14 15 | imbi12d | ⊢ ( 𝑝  =  𝑥  →  ( ( 𝑝  <s  𝑞  →  (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝑝 ) )  ↔  ( 𝑥  <s  𝑞  →  (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝑥 ) ) ) ) | 
						
							| 17 | 13 16 | anbi12d | ⊢ ( 𝑝  =  𝑥  →  ( ( (  -us  ‘ 𝑝 )  ∈   No   ∧  ( 𝑝  <s  𝑞  →  (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝑝 ) ) )  ↔  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑞  →  (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝑥 ) ) ) ) ) | 
						
							| 18 | 11 17 | imbi12d | ⊢ ( 𝑝  =  𝑥  →  ( ( 𝑏  =  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( (  -us  ‘ 𝑝 )  ∈   No   ∧  ( 𝑝  <s  𝑞  →  (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝑝 ) ) ) )  ↔  ( 𝑏  =  ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑞  →  (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 19 |  | fveq2 | ⊢ ( 𝑞  =  𝑦  →  (  bday  ‘ 𝑞 )  =  (  bday  ‘ 𝑦 ) ) | 
						
							| 20 | 19 | uneq2d | ⊢ ( 𝑞  =  𝑦  →  ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑞 ) )  =  ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) ) ) | 
						
							| 21 | 20 | eqeq2d | ⊢ ( 𝑞  =  𝑦  →  ( 𝑏  =  ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑞 ) )  ↔  𝑏  =  ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) ) ) ) | 
						
							| 22 |  | breq2 | ⊢ ( 𝑞  =  𝑦  →  ( 𝑥  <s  𝑞  ↔  𝑥  <s  𝑦 ) ) | 
						
							| 23 |  | fveq2 | ⊢ ( 𝑞  =  𝑦  →  (  -us  ‘ 𝑞 )  =  (  -us  ‘ 𝑦 ) ) | 
						
							| 24 | 23 | breq1d | ⊢ ( 𝑞  =  𝑦  →  ( (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝑥 )  ↔  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) | 
						
							| 25 | 22 24 | imbi12d | ⊢ ( 𝑞  =  𝑦  →  ( ( 𝑥  <s  𝑞  →  (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝑥 ) )  ↔  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) | 
						
							| 26 | 25 | anbi2d | ⊢ ( 𝑞  =  𝑦  →  ( ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑞  →  (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝑥 ) ) )  ↔  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) ) | 
						
							| 27 | 21 26 | imbi12d | ⊢ ( 𝑞  =  𝑦  →  ( ( 𝑏  =  ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑞  →  (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝑥 ) ) ) )  ↔  ( 𝑏  =  ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 28 | 18 27 | cbvral2vw | ⊢ ( ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ( 𝑏  =  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( (  -us  ‘ 𝑝 )  ∈   No   ∧  ( 𝑝  <s  𝑞  →  (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝑝 ) ) ) )  ↔  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( 𝑏  =  ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) ) | 
						
							| 29 | 8 28 | bitrdi | ⊢ ( 𝑎  =  𝑏  →  ( ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ( 𝑎  =  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( (  -us  ‘ 𝑝 )  ∈   No   ∧  ( 𝑝  <s  𝑞  →  (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝑝 ) ) ) )  ↔  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( 𝑏  =  ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 30 |  | raleq | ⊢ ( 𝑎  =  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( ∀ 𝑏  ∈  𝑎 ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( 𝑏  =  ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) )  ↔  ∀ 𝑏  ∈  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) ) ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( 𝑏  =  ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 31 |  | ralrot3 | ⊢ ( ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ∀ 𝑏  ∈  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) ) ( 𝑏  =  ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) )  ↔  ∀ 𝑏  ∈  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) ) ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( 𝑏  =  ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) ) | 
						
							| 32 |  | r19.23v | ⊢ ( ∀ 𝑏  ∈  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) ) ( 𝑏  =  ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) )  ↔  ( ∃ 𝑏  ∈  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) ) 𝑏  =  ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) ) | 
						
							| 33 |  | risset | ⊢ ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  ↔  ∃ 𝑏  ∈  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) ) 𝑏  =  ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) ) ) | 
						
							| 34 | 33 | imbi1i | ⊢ ( ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) )  ↔  ( ∃ 𝑏  ∈  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) ) 𝑏  =  ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) ) | 
						
							| 35 | 32 34 | bitr4i | ⊢ ( ∀ 𝑏  ∈  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) ) ( 𝑏  =  ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) )  ↔  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) ) | 
						
							| 36 | 35 | 2ralbii | ⊢ ( ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ∀ 𝑏  ∈  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) ) ( 𝑏  =  ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) )  ↔  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) ) | 
						
							| 37 | 31 36 | bitr3i | ⊢ ( ∀ 𝑏  ∈  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) ) ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( 𝑏  =  ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) )  ↔  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) ) | 
						
							| 38 | 30 37 | bitrdi | ⊢ ( 𝑎  =  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( ∀ 𝑏  ∈  𝑎 ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( 𝑏  =  ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) )  ↔  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 39 |  | simpr | ⊢ ( ( ( 𝑝  ∈   No   ∧  𝑞  ∈   No  )  ∧  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) )  →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) ) | 
						
							| 40 |  | simpll | ⊢ ( ( ( 𝑝  ∈   No   ∧  𝑞  ∈   No  )  ∧  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) )  →  𝑝  ∈   No  ) | 
						
							| 41 | 39 40 | negsproplem3 | ⊢ ( ( ( 𝑝  ∈   No   ∧  𝑞  ∈   No  )  ∧  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) )  →  ( (  -us  ‘ 𝑝 )  ∈   No   ∧  (  -us   “  (  R  ‘ 𝑝 ) )  <<s  { (  -us  ‘ 𝑝 ) }  ∧  { (  -us  ‘ 𝑝 ) }  <<s  (  -us   “  (  L  ‘ 𝑝 ) ) ) ) | 
						
							| 42 | 41 | simp1d | ⊢ ( ( ( 𝑝  ∈   No   ∧  𝑞  ∈   No  )  ∧  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) )  →  (  -us  ‘ 𝑝 )  ∈   No  ) | 
						
							| 43 |  | simplr | ⊢ ( ( ( ( 𝑝  ∈   No   ∧  𝑞  ∈   No  )  ∧  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) )  ∧  𝑝  <s  𝑞 )  →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) ) | 
						
							| 44 |  | simplll | ⊢ ( ( ( ( 𝑝  ∈   No   ∧  𝑞  ∈   No  )  ∧  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) )  ∧  𝑝  <s  𝑞 )  →  𝑝  ∈   No  ) | 
						
							| 45 |  | simpllr | ⊢ ( ( ( ( 𝑝  ∈   No   ∧  𝑞  ∈   No  )  ∧  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) )  ∧  𝑝  <s  𝑞 )  →  𝑞  ∈   No  ) | 
						
							| 46 |  | simpr | ⊢ ( ( ( ( 𝑝  ∈   No   ∧  𝑞  ∈   No  )  ∧  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) )  ∧  𝑝  <s  𝑞 )  →  𝑝  <s  𝑞 ) | 
						
							| 47 | 43 44 45 46 | negsproplem7 | ⊢ ( ( ( ( 𝑝  ∈   No   ∧  𝑞  ∈   No  )  ∧  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) )  ∧  𝑝  <s  𝑞 )  →  (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝑝 ) ) | 
						
							| 48 | 47 | ex | ⊢ ( ( ( 𝑝  ∈   No   ∧  𝑞  ∈   No  )  ∧  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) )  →  ( 𝑝  <s  𝑞  →  (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝑝 ) ) ) | 
						
							| 49 | 42 48 | jca | ⊢ ( ( ( 𝑝  ∈   No   ∧  𝑞  ∈   No  )  ∧  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) )  →  ( (  -us  ‘ 𝑝 )  ∈   No   ∧  ( 𝑝  <s  𝑞  →  (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝑝 ) ) ) ) | 
						
							| 50 | 49 | expcom | ⊢ ( ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) )  →  ( ( 𝑝  ∈   No   ∧  𝑞  ∈   No  )  →  ( (  -us  ‘ 𝑝 )  ∈   No   ∧  ( 𝑝  <s  𝑞  →  (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝑝 ) ) ) ) ) | 
						
							| 51 | 38 50 | biimtrdi | ⊢ ( 𝑎  =  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( ∀ 𝑏  ∈  𝑎 ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( 𝑏  =  ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) )  →  ( ( 𝑝  ∈   No   ∧  𝑞  ∈   No  )  →  ( (  -us  ‘ 𝑝 )  ∈   No   ∧  ( 𝑝  <s  𝑞  →  (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝑝 ) ) ) ) ) ) | 
						
							| 52 | 51 | com3l | ⊢ ( ∀ 𝑏  ∈  𝑎 ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( 𝑏  =  ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) )  →  ( ( 𝑝  ∈   No   ∧  𝑞  ∈   No  )  →  ( 𝑎  =  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( (  -us  ‘ 𝑝 )  ∈   No   ∧  ( 𝑝  <s  𝑞  →  (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝑝 ) ) ) ) ) ) | 
						
							| 53 | 52 | ralrimivv | ⊢ ( ∀ 𝑏  ∈  𝑎 ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( 𝑏  =  ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) )  →  ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ( 𝑎  =  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( (  -us  ‘ 𝑝 )  ∈   No   ∧  ( 𝑝  <s  𝑞  →  (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝑝 ) ) ) ) ) | 
						
							| 54 | 53 | a1i | ⊢ ( 𝑎  ∈  On  →  ( ∀ 𝑏  ∈  𝑎 ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( 𝑏  =  ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) )  →  ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ( 𝑎  =  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( (  -us  ‘ 𝑝 )  ∈   No   ∧  ( 𝑝  <s  𝑞  →  (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝑝 ) ) ) ) ) ) | 
						
							| 55 | 29 54 | tfis2 | ⊢ ( 𝑎  ∈  On  →  ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ( 𝑎  =  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( (  -us  ‘ 𝑝 )  ∈   No   ∧  ( 𝑝  <s  𝑞  →  (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝑝 ) ) ) ) ) | 
						
							| 56 |  | fveq2 | ⊢ ( 𝑝  =  𝐴  →  (  bday  ‘ 𝑝 )  =  (  bday  ‘ 𝐴 ) ) | 
						
							| 57 | 56 | uneq1d | ⊢ ( 𝑝  =  𝐴  →  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  =  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝑞 ) ) ) | 
						
							| 58 | 57 | eqeq2d | ⊢ ( 𝑝  =  𝐴  →  ( 𝑎  =  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  ↔  𝑎  =  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝑞 ) ) ) ) | 
						
							| 59 |  | fveq2 | ⊢ ( 𝑝  =  𝐴  →  (  -us  ‘ 𝑝 )  =  (  -us  ‘ 𝐴 ) ) | 
						
							| 60 | 59 | eleq1d | ⊢ ( 𝑝  =  𝐴  →  ( (  -us  ‘ 𝑝 )  ∈   No   ↔  (  -us  ‘ 𝐴 )  ∈   No  ) ) | 
						
							| 61 |  | breq1 | ⊢ ( 𝑝  =  𝐴  →  ( 𝑝  <s  𝑞  ↔  𝐴  <s  𝑞 ) ) | 
						
							| 62 | 59 | breq2d | ⊢ ( 𝑝  =  𝐴  →  ( (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝑝 )  ↔  (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝐴 ) ) ) | 
						
							| 63 | 61 62 | imbi12d | ⊢ ( 𝑝  =  𝐴  →  ( ( 𝑝  <s  𝑞  →  (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝑝 ) )  ↔  ( 𝐴  <s  𝑞  →  (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝐴 ) ) ) ) | 
						
							| 64 | 60 63 | anbi12d | ⊢ ( 𝑝  =  𝐴  →  ( ( (  -us  ‘ 𝑝 )  ∈   No   ∧  ( 𝑝  <s  𝑞  →  (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝑝 ) ) )  ↔  ( (  -us  ‘ 𝐴 )  ∈   No   ∧  ( 𝐴  <s  𝑞  →  (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝐴 ) ) ) ) ) | 
						
							| 65 | 58 64 | imbi12d | ⊢ ( 𝑝  =  𝐴  →  ( ( 𝑎  =  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( (  -us  ‘ 𝑝 )  ∈   No   ∧  ( 𝑝  <s  𝑞  →  (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝑝 ) ) ) )  ↔  ( 𝑎  =  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( (  -us  ‘ 𝐴 )  ∈   No   ∧  ( 𝐴  <s  𝑞  →  (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 66 |  | fveq2 | ⊢ ( 𝑞  =  𝐵  →  (  bday  ‘ 𝑞 )  =  (  bday  ‘ 𝐵 ) ) | 
						
							| 67 | 66 | uneq2d | ⊢ ( 𝑞  =  𝐵  →  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝑞 ) )  =  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) ) ) | 
						
							| 68 | 67 | eqeq2d | ⊢ ( 𝑞  =  𝐵  →  ( 𝑎  =  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝑞 ) )  ↔  𝑎  =  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) ) ) ) | 
						
							| 69 |  | breq2 | ⊢ ( 𝑞  =  𝐵  →  ( 𝐴  <s  𝑞  ↔  𝐴  <s  𝐵 ) ) | 
						
							| 70 |  | fveq2 | ⊢ ( 𝑞  =  𝐵  →  (  -us  ‘ 𝑞 )  =  (  -us  ‘ 𝐵 ) ) | 
						
							| 71 | 70 | breq1d | ⊢ ( 𝑞  =  𝐵  →  ( (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝐴 )  ↔  (  -us  ‘ 𝐵 )  <s  (  -us  ‘ 𝐴 ) ) ) | 
						
							| 72 | 69 71 | imbi12d | ⊢ ( 𝑞  =  𝐵  →  ( ( 𝐴  <s  𝑞  →  (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝐴 ) )  ↔  ( 𝐴  <s  𝐵  →  (  -us  ‘ 𝐵 )  <s  (  -us  ‘ 𝐴 ) ) ) ) | 
						
							| 73 | 72 | anbi2d | ⊢ ( 𝑞  =  𝐵  →  ( ( (  -us  ‘ 𝐴 )  ∈   No   ∧  ( 𝐴  <s  𝑞  →  (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝐴 ) ) )  ↔  ( (  -us  ‘ 𝐴 )  ∈   No   ∧  ( 𝐴  <s  𝐵  →  (  -us  ‘ 𝐵 )  <s  (  -us  ‘ 𝐴 ) ) ) ) ) | 
						
							| 74 | 68 73 | imbi12d | ⊢ ( 𝑞  =  𝐵  →  ( ( 𝑎  =  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( (  -us  ‘ 𝐴 )  ∈   No   ∧  ( 𝐴  <s  𝑞  →  (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝐴 ) ) ) )  ↔  ( 𝑎  =  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) )  →  ( (  -us  ‘ 𝐴 )  ∈   No   ∧  ( 𝐴  <s  𝐵  →  (  -us  ‘ 𝐵 )  <s  (  -us  ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 75 | 65 74 | rspc2v | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( ∀ 𝑝  ∈   No  ∀ 𝑞  ∈   No  ( 𝑎  =  ( (  bday  ‘ 𝑝 )  ∪  (  bday  ‘ 𝑞 ) )  →  ( (  -us  ‘ 𝑝 )  ∈   No   ∧  ( 𝑝  <s  𝑞  →  (  -us  ‘ 𝑞 )  <s  (  -us  ‘ 𝑝 ) ) ) )  →  ( 𝑎  =  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) )  →  ( (  -us  ‘ 𝐴 )  ∈   No   ∧  ( 𝐴  <s  𝐵  →  (  -us  ‘ 𝐵 )  <s  (  -us  ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 76 | 55 75 | syl5com | ⊢ ( 𝑎  ∈  On  →  ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝑎  =  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) )  →  ( (  -us  ‘ 𝐴 )  ∈   No   ∧  ( 𝐴  <s  𝐵  →  (  -us  ‘ 𝐵 )  <s  (  -us  ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 77 | 76 | com23 | ⊢ ( 𝑎  ∈  On  →  ( 𝑎  =  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) )  →  ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( (  -us  ‘ 𝐴 )  ∈   No   ∧  ( 𝐴  <s  𝐵  →  (  -us  ‘ 𝐵 )  <s  (  -us  ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 78 | 77 | rexlimiv | ⊢ ( ∃ 𝑎  ∈  On 𝑎  =  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) )  →  ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( (  -us  ‘ 𝐴 )  ∈   No   ∧  ( 𝐴  <s  𝐵  →  (  -us  ‘ 𝐵 )  <s  (  -us  ‘ 𝐴 ) ) ) ) ) | 
						
							| 79 | 5 78 | ax-mp | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( (  -us  ‘ 𝐴 )  ∈   No   ∧  ( 𝐴  <s  𝐵  →  (  -us  ‘ 𝐵 )  <s  (  -us  ‘ 𝐴 ) ) ) ) |