| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negsproplem.1 | ⊢ ( 𝜑  →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) ) | 
						
							| 2 |  | negsproplem2.1 | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
						
							| 3 | 1 2 | negsproplem2 | ⊢ ( 𝜑  →  (  -us   “  (  R  ‘ 𝐴 ) )  <<s  (  -us   “  (  L  ‘ 𝐴 ) ) ) | 
						
							| 4 |  | scutcut | ⊢ ( (  -us   “  (  R  ‘ 𝐴 ) )  <<s  (  -us   “  (  L  ‘ 𝐴 ) )  →  ( ( (  -us   “  (  R  ‘ 𝐴 ) )  |s  (  -us   “  (  L  ‘ 𝐴 ) ) )  ∈   No   ∧  (  -us   “  (  R  ‘ 𝐴 ) )  <<s  { ( (  -us   “  (  R  ‘ 𝐴 ) )  |s  (  -us   “  (  L  ‘ 𝐴 ) ) ) }  ∧  { ( (  -us   “  (  R  ‘ 𝐴 ) )  |s  (  -us   “  (  L  ‘ 𝐴 ) ) ) }  <<s  (  -us   “  (  L  ‘ 𝐴 ) ) ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝜑  →  ( ( (  -us   “  (  R  ‘ 𝐴 ) )  |s  (  -us   “  (  L  ‘ 𝐴 ) ) )  ∈   No   ∧  (  -us   “  (  R  ‘ 𝐴 ) )  <<s  { ( (  -us   “  (  R  ‘ 𝐴 ) )  |s  (  -us   “  (  L  ‘ 𝐴 ) ) ) }  ∧  { ( (  -us   “  (  R  ‘ 𝐴 ) )  |s  (  -us   “  (  L  ‘ 𝐴 ) ) ) }  <<s  (  -us   “  (  L  ‘ 𝐴 ) ) ) ) | 
						
							| 6 |  | negsval | ⊢ ( 𝐴  ∈   No   →  (  -us  ‘ 𝐴 )  =  ( (  -us   “  (  R  ‘ 𝐴 ) )  |s  (  -us   “  (  L  ‘ 𝐴 ) ) ) ) | 
						
							| 7 | 2 6 | syl | ⊢ ( 𝜑  →  (  -us  ‘ 𝐴 )  =  ( (  -us   “  (  R  ‘ 𝐴 ) )  |s  (  -us   “  (  L  ‘ 𝐴 ) ) ) ) | 
						
							| 8 | 7 | eleq1d | ⊢ ( 𝜑  →  ( (  -us  ‘ 𝐴 )  ∈   No   ↔  ( (  -us   “  (  R  ‘ 𝐴 ) )  |s  (  -us   “  (  L  ‘ 𝐴 ) ) )  ∈   No  ) ) | 
						
							| 9 | 7 | sneqd | ⊢ ( 𝜑  →  { (  -us  ‘ 𝐴 ) }  =  { ( (  -us   “  (  R  ‘ 𝐴 ) )  |s  (  -us   “  (  L  ‘ 𝐴 ) ) ) } ) | 
						
							| 10 | 9 | breq2d | ⊢ ( 𝜑  →  ( (  -us   “  (  R  ‘ 𝐴 ) )  <<s  { (  -us  ‘ 𝐴 ) }  ↔  (  -us   “  (  R  ‘ 𝐴 ) )  <<s  { ( (  -us   “  (  R  ‘ 𝐴 ) )  |s  (  -us   “  (  L  ‘ 𝐴 ) ) ) } ) ) | 
						
							| 11 | 9 | breq1d | ⊢ ( 𝜑  →  ( { (  -us  ‘ 𝐴 ) }  <<s  (  -us   “  (  L  ‘ 𝐴 ) )  ↔  { ( (  -us   “  (  R  ‘ 𝐴 ) )  |s  (  -us   “  (  L  ‘ 𝐴 ) ) ) }  <<s  (  -us   “  (  L  ‘ 𝐴 ) ) ) ) | 
						
							| 12 | 8 10 11 | 3anbi123d | ⊢ ( 𝜑  →  ( ( (  -us  ‘ 𝐴 )  ∈   No   ∧  (  -us   “  (  R  ‘ 𝐴 ) )  <<s  { (  -us  ‘ 𝐴 ) }  ∧  { (  -us  ‘ 𝐴 ) }  <<s  (  -us   “  (  L  ‘ 𝐴 ) ) )  ↔  ( ( (  -us   “  (  R  ‘ 𝐴 ) )  |s  (  -us   “  (  L  ‘ 𝐴 ) ) )  ∈   No   ∧  (  -us   “  (  R  ‘ 𝐴 ) )  <<s  { ( (  -us   “  (  R  ‘ 𝐴 ) )  |s  (  -us   “  (  L  ‘ 𝐴 ) ) ) }  ∧  { ( (  -us   “  (  R  ‘ 𝐴 ) )  |s  (  -us   “  (  L  ‘ 𝐴 ) ) ) }  <<s  (  -us   “  (  L  ‘ 𝐴 ) ) ) ) ) | 
						
							| 13 | 5 12 | mpbird | ⊢ ( 𝜑  →  ( (  -us  ‘ 𝐴 )  ∈   No   ∧  (  -us   “  (  R  ‘ 𝐴 ) )  <<s  { (  -us  ‘ 𝐴 ) }  ∧  { (  -us  ‘ 𝐴 ) }  <<s  (  -us   “  (  L  ‘ 𝐴 ) ) ) ) |