| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-negs | ⊢  -us   =   norec  ( ( 𝑥  ∈  V ,  𝑛  ∈  V  ↦  ( ( 𝑛  “  (  R  ‘ 𝑥 ) )  |s  ( 𝑛  “  (  L  ‘ 𝑥 ) ) ) ) ) | 
						
							| 2 | 1 | norecov | ⊢ ( 𝐴  ∈   No   →  (  -us  ‘ 𝐴 )  =  ( 𝐴 ( 𝑥  ∈  V ,  𝑛  ∈  V  ↦  ( ( 𝑛  “  (  R  ‘ 𝑥 ) )  |s  ( 𝑛  “  (  L  ‘ 𝑥 ) ) ) ) (  -us   ↾  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) ) ) ) | 
						
							| 3 |  | elex | ⊢ ( 𝐴  ∈   No   →  𝐴  ∈  V ) | 
						
							| 4 |  | negsfn | ⊢  -us   Fn   No | 
						
							| 5 |  | fnfun | ⊢ (  -us   Fn   No   →  Fun   -us  ) | 
						
							| 6 | 4 5 | ax-mp | ⊢ Fun   -us | 
						
							| 7 |  | fvex | ⊢ (  L  ‘ 𝐴 )  ∈  V | 
						
							| 8 |  | fvex | ⊢ (  R  ‘ 𝐴 )  ∈  V | 
						
							| 9 | 7 8 | unex | ⊢ ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∈  V | 
						
							| 10 |  | resfunexg | ⊢ ( ( Fun   -us   ∧  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∈  V )  →  (  -us   ↾  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) )  ∈  V ) | 
						
							| 11 | 6 9 10 | mp2an | ⊢ (  -us   ↾  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) )  ∈  V | 
						
							| 12 | 11 | a1i | ⊢ ( 𝐴  ∈   No   →  (  -us   ↾  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) )  ∈  V ) | 
						
							| 13 |  | ovexd | ⊢ ( 𝐴  ∈   No   →  ( ( (  -us   ↾  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) )  “  (  R  ‘ 𝐴 ) )  |s  ( (  -us   ↾  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) )  “  (  L  ‘ 𝐴 ) ) )  ∈  V ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑥  =  𝐴  →  (  R  ‘ 𝑥 )  =  (  R  ‘ 𝐴 ) ) | 
						
							| 15 | 14 | imaeq2d | ⊢ ( 𝑥  =  𝐴  →  ( 𝑛  “  (  R  ‘ 𝑥 ) )  =  ( 𝑛  “  (  R  ‘ 𝐴 ) ) ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑥  =  𝐴  →  (  L  ‘ 𝑥 )  =  (  L  ‘ 𝐴 ) ) | 
						
							| 17 | 16 | imaeq2d | ⊢ ( 𝑥  =  𝐴  →  ( 𝑛  “  (  L  ‘ 𝑥 ) )  =  ( 𝑛  “  (  L  ‘ 𝐴 ) ) ) | 
						
							| 18 | 15 17 | oveq12d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑛  “  (  R  ‘ 𝑥 ) )  |s  ( 𝑛  “  (  L  ‘ 𝑥 ) ) )  =  ( ( 𝑛  “  (  R  ‘ 𝐴 ) )  |s  ( 𝑛  “  (  L  ‘ 𝐴 ) ) ) ) | 
						
							| 19 |  | imaeq1 | ⊢ ( 𝑛  =  (  -us   ↾  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) )  →  ( 𝑛  “  (  R  ‘ 𝐴 ) )  =  ( (  -us   ↾  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) )  “  (  R  ‘ 𝐴 ) ) ) | 
						
							| 20 |  | imaeq1 | ⊢ ( 𝑛  =  (  -us   ↾  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) )  →  ( 𝑛  “  (  L  ‘ 𝐴 ) )  =  ( (  -us   ↾  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) )  “  (  L  ‘ 𝐴 ) ) ) | 
						
							| 21 | 19 20 | oveq12d | ⊢ ( 𝑛  =  (  -us   ↾  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) )  →  ( ( 𝑛  “  (  R  ‘ 𝐴 ) )  |s  ( 𝑛  “  (  L  ‘ 𝐴 ) ) )  =  ( ( (  -us   ↾  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) )  “  (  R  ‘ 𝐴 ) )  |s  ( (  -us   ↾  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) )  “  (  L  ‘ 𝐴 ) ) ) ) | 
						
							| 22 |  | eqid | ⊢ ( 𝑥  ∈  V ,  𝑛  ∈  V  ↦  ( ( 𝑛  “  (  R  ‘ 𝑥 ) )  |s  ( 𝑛  “  (  L  ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  V ,  𝑛  ∈  V  ↦  ( ( 𝑛  “  (  R  ‘ 𝑥 ) )  |s  ( 𝑛  “  (  L  ‘ 𝑥 ) ) ) ) | 
						
							| 23 | 18 21 22 | ovmpog | ⊢ ( ( 𝐴  ∈  V  ∧  (  -us   ↾  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) )  ∈  V  ∧  ( ( (  -us   ↾  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) )  “  (  R  ‘ 𝐴 ) )  |s  ( (  -us   ↾  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) )  “  (  L  ‘ 𝐴 ) ) )  ∈  V )  →  ( 𝐴 ( 𝑥  ∈  V ,  𝑛  ∈  V  ↦  ( ( 𝑛  “  (  R  ‘ 𝑥 ) )  |s  ( 𝑛  “  (  L  ‘ 𝑥 ) ) ) ) (  -us   ↾  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) ) )  =  ( ( (  -us   ↾  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) )  “  (  R  ‘ 𝐴 ) )  |s  ( (  -us   ↾  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) )  “  (  L  ‘ 𝐴 ) ) ) ) | 
						
							| 24 | 3 12 13 23 | syl3anc | ⊢ ( 𝐴  ∈   No   →  ( 𝐴 ( 𝑥  ∈  V ,  𝑛  ∈  V  ↦  ( ( 𝑛  “  (  R  ‘ 𝑥 ) )  |s  ( 𝑛  “  (  L  ‘ 𝑥 ) ) ) ) (  -us   ↾  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) ) )  =  ( ( (  -us   ↾  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) )  “  (  R  ‘ 𝐴 ) )  |s  ( (  -us   ↾  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) )  “  (  L  ‘ 𝐴 ) ) ) ) | 
						
							| 25 |  | ssun2 | ⊢ (  R  ‘ 𝐴 )  ⊆  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) | 
						
							| 26 |  | resima2 | ⊢ ( (  R  ‘ 𝐴 )  ⊆  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  →  ( (  -us   ↾  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) )  “  (  R  ‘ 𝐴 ) )  =  (  -us   “  (  R  ‘ 𝐴 ) ) ) | 
						
							| 27 | 25 26 | ax-mp | ⊢ ( (  -us   ↾  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) )  “  (  R  ‘ 𝐴 ) )  =  (  -us   “  (  R  ‘ 𝐴 ) ) | 
						
							| 28 |  | ssun1 | ⊢ (  L  ‘ 𝐴 )  ⊆  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) | 
						
							| 29 |  | resima2 | ⊢ ( (  L  ‘ 𝐴 )  ⊆  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  →  ( (  -us   ↾  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) )  “  (  L  ‘ 𝐴 ) )  =  (  -us   “  (  L  ‘ 𝐴 ) ) ) | 
						
							| 30 | 28 29 | ax-mp | ⊢ ( (  -us   ↾  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) )  “  (  L  ‘ 𝐴 ) )  =  (  -us   “  (  L  ‘ 𝐴 ) ) | 
						
							| 31 | 27 30 | oveq12i | ⊢ ( ( (  -us   ↾  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) )  “  (  R  ‘ 𝐴 ) )  |s  ( (  -us   ↾  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) )  “  (  L  ‘ 𝐴 ) ) )  =  ( (  -us   “  (  R  ‘ 𝐴 ) )  |s  (  -us   “  (  L  ‘ 𝐴 ) ) ) | 
						
							| 32 | 31 | a1i | ⊢ ( 𝐴  ∈   No   →  ( ( (  -us   ↾  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) )  “  (  R  ‘ 𝐴 ) )  |s  ( (  -us   ↾  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) )  “  (  L  ‘ 𝐴 ) ) )  =  ( (  -us   “  (  R  ‘ 𝐴 ) )  |s  (  -us   “  (  L  ‘ 𝐴 ) ) ) ) | 
						
							| 33 | 2 24 32 | 3eqtrd | ⊢ ( 𝐴  ∈   No   →  (  -us  ‘ 𝐴 )  =  ( (  -us   “  (  R  ‘ 𝐴 ) )  |s  (  -us   “  (  L  ‘ 𝐴 ) ) ) ) |