Step |
Hyp |
Ref |
Expression |
1 |
|
df-negs |
|- -us = norec ( ( x e. _V , n e. _V |-> ( ( n " ( _R ` x ) ) |s ( n " ( _L ` x ) ) ) ) ) |
2 |
1
|
norecov |
|- ( A e. No -> ( -us ` A ) = ( A ( x e. _V , n e. _V |-> ( ( n " ( _R ` x ) ) |s ( n " ( _L ` x ) ) ) ) ( -us |` ( ( _L ` A ) u. ( _R ` A ) ) ) ) ) |
3 |
|
elex |
|- ( A e. No -> A e. _V ) |
4 |
|
negsfn |
|- -us Fn No |
5 |
|
fnfun |
|- ( -us Fn No -> Fun -us ) |
6 |
4 5
|
ax-mp |
|- Fun -us |
7 |
|
fvex |
|- ( _L ` A ) e. _V |
8 |
|
fvex |
|- ( _R ` A ) e. _V |
9 |
7 8
|
unex |
|- ( ( _L ` A ) u. ( _R ` A ) ) e. _V |
10 |
|
resfunexg |
|- ( ( Fun -us /\ ( ( _L ` A ) u. ( _R ` A ) ) e. _V ) -> ( -us |` ( ( _L ` A ) u. ( _R ` A ) ) ) e. _V ) |
11 |
6 9 10
|
mp2an |
|- ( -us |` ( ( _L ` A ) u. ( _R ` A ) ) ) e. _V |
12 |
11
|
a1i |
|- ( A e. No -> ( -us |` ( ( _L ` A ) u. ( _R ` A ) ) ) e. _V ) |
13 |
|
ovexd |
|- ( A e. No -> ( ( ( -us |` ( ( _L ` A ) u. ( _R ` A ) ) ) " ( _R ` A ) ) |s ( ( -us |` ( ( _L ` A ) u. ( _R ` A ) ) ) " ( _L ` A ) ) ) e. _V ) |
14 |
|
fveq2 |
|- ( x = A -> ( _R ` x ) = ( _R ` A ) ) |
15 |
14
|
imaeq2d |
|- ( x = A -> ( n " ( _R ` x ) ) = ( n " ( _R ` A ) ) ) |
16 |
|
fveq2 |
|- ( x = A -> ( _L ` x ) = ( _L ` A ) ) |
17 |
16
|
imaeq2d |
|- ( x = A -> ( n " ( _L ` x ) ) = ( n " ( _L ` A ) ) ) |
18 |
15 17
|
oveq12d |
|- ( x = A -> ( ( n " ( _R ` x ) ) |s ( n " ( _L ` x ) ) ) = ( ( n " ( _R ` A ) ) |s ( n " ( _L ` A ) ) ) ) |
19 |
|
imaeq1 |
|- ( n = ( -us |` ( ( _L ` A ) u. ( _R ` A ) ) ) -> ( n " ( _R ` A ) ) = ( ( -us |` ( ( _L ` A ) u. ( _R ` A ) ) ) " ( _R ` A ) ) ) |
20 |
|
imaeq1 |
|- ( n = ( -us |` ( ( _L ` A ) u. ( _R ` A ) ) ) -> ( n " ( _L ` A ) ) = ( ( -us |` ( ( _L ` A ) u. ( _R ` A ) ) ) " ( _L ` A ) ) ) |
21 |
19 20
|
oveq12d |
|- ( n = ( -us |` ( ( _L ` A ) u. ( _R ` A ) ) ) -> ( ( n " ( _R ` A ) ) |s ( n " ( _L ` A ) ) ) = ( ( ( -us |` ( ( _L ` A ) u. ( _R ` A ) ) ) " ( _R ` A ) ) |s ( ( -us |` ( ( _L ` A ) u. ( _R ` A ) ) ) " ( _L ` A ) ) ) ) |
22 |
|
eqid |
|- ( x e. _V , n e. _V |-> ( ( n " ( _R ` x ) ) |s ( n " ( _L ` x ) ) ) ) = ( x e. _V , n e. _V |-> ( ( n " ( _R ` x ) ) |s ( n " ( _L ` x ) ) ) ) |
23 |
18 21 22
|
ovmpog |
|- ( ( A e. _V /\ ( -us |` ( ( _L ` A ) u. ( _R ` A ) ) ) e. _V /\ ( ( ( -us |` ( ( _L ` A ) u. ( _R ` A ) ) ) " ( _R ` A ) ) |s ( ( -us |` ( ( _L ` A ) u. ( _R ` A ) ) ) " ( _L ` A ) ) ) e. _V ) -> ( A ( x e. _V , n e. _V |-> ( ( n " ( _R ` x ) ) |s ( n " ( _L ` x ) ) ) ) ( -us |` ( ( _L ` A ) u. ( _R ` A ) ) ) ) = ( ( ( -us |` ( ( _L ` A ) u. ( _R ` A ) ) ) " ( _R ` A ) ) |s ( ( -us |` ( ( _L ` A ) u. ( _R ` A ) ) ) " ( _L ` A ) ) ) ) |
24 |
3 12 13 23
|
syl3anc |
|- ( A e. No -> ( A ( x e. _V , n e. _V |-> ( ( n " ( _R ` x ) ) |s ( n " ( _L ` x ) ) ) ) ( -us |` ( ( _L ` A ) u. ( _R ` A ) ) ) ) = ( ( ( -us |` ( ( _L ` A ) u. ( _R ` A ) ) ) " ( _R ` A ) ) |s ( ( -us |` ( ( _L ` A ) u. ( _R ` A ) ) ) " ( _L ` A ) ) ) ) |
25 |
|
ssun2 |
|- ( _R ` A ) C_ ( ( _L ` A ) u. ( _R ` A ) ) |
26 |
|
resima2 |
|- ( ( _R ` A ) C_ ( ( _L ` A ) u. ( _R ` A ) ) -> ( ( -us |` ( ( _L ` A ) u. ( _R ` A ) ) ) " ( _R ` A ) ) = ( -us " ( _R ` A ) ) ) |
27 |
25 26
|
ax-mp |
|- ( ( -us |` ( ( _L ` A ) u. ( _R ` A ) ) ) " ( _R ` A ) ) = ( -us " ( _R ` A ) ) |
28 |
|
ssun1 |
|- ( _L ` A ) C_ ( ( _L ` A ) u. ( _R ` A ) ) |
29 |
|
resima2 |
|- ( ( _L ` A ) C_ ( ( _L ` A ) u. ( _R ` A ) ) -> ( ( -us |` ( ( _L ` A ) u. ( _R ` A ) ) ) " ( _L ` A ) ) = ( -us " ( _L ` A ) ) ) |
30 |
28 29
|
ax-mp |
|- ( ( -us |` ( ( _L ` A ) u. ( _R ` A ) ) ) " ( _L ` A ) ) = ( -us " ( _L ` A ) ) |
31 |
27 30
|
oveq12i |
|- ( ( ( -us |` ( ( _L ` A ) u. ( _R ` A ) ) ) " ( _R ` A ) ) |s ( ( -us |` ( ( _L ` A ) u. ( _R ` A ) ) ) " ( _L ` A ) ) ) = ( ( -us " ( _R ` A ) ) |s ( -us " ( _L ` A ) ) ) |
32 |
31
|
a1i |
|- ( A e. No -> ( ( ( -us |` ( ( _L ` A ) u. ( _R ` A ) ) ) " ( _R ` A ) ) |s ( ( -us |` ( ( _L ` A ) u. ( _R ` A ) ) ) " ( _L ` A ) ) ) = ( ( -us " ( _R ` A ) ) |s ( -us " ( _L ` A ) ) ) ) |
33 |
2 24 32
|
3eqtrd |
|- ( A e. No -> ( -us ` A ) = ( ( -us " ( _R ` A ) ) |s ( -us " ( _L ` A ) ) ) ) |