| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negsproplem.1 | ⊢ ( 𝜑  →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) ) | 
						
							| 2 |  | negsproplem2.1 | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
						
							| 3 |  | negsfn | ⊢  -us   Fn   No | 
						
							| 4 |  | fnfun | ⊢ (  -us   Fn   No   →  Fun   -us  ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ Fun   -us | 
						
							| 6 |  | fvex | ⊢ (  R  ‘ 𝐴 )  ∈  V | 
						
							| 7 | 6 | funimaex | ⊢ ( Fun   -us   →  (  -us   “  (  R  ‘ 𝐴 ) )  ∈  V ) | 
						
							| 8 | 5 7 | mp1i | ⊢ ( 𝜑  →  (  -us   “  (  R  ‘ 𝐴 ) )  ∈  V ) | 
						
							| 9 |  | fvex | ⊢ (  L  ‘ 𝐴 )  ∈  V | 
						
							| 10 | 9 | funimaex | ⊢ ( Fun   -us   →  (  -us   “  (  L  ‘ 𝐴 ) )  ∈  V ) | 
						
							| 11 | 5 10 | mp1i | ⊢ ( 𝜑  →  (  -us   “  (  L  ‘ 𝐴 ) )  ∈  V ) | 
						
							| 12 |  | rightssold | ⊢ (  R  ‘ 𝐴 )  ⊆  (  O  ‘ (  bday  ‘ 𝐴 ) ) | 
						
							| 13 |  | imass2 | ⊢ ( (  R  ‘ 𝐴 )  ⊆  (  O  ‘ (  bday  ‘ 𝐴 ) )  →  (  -us   “  (  R  ‘ 𝐴 ) )  ⊆  (  -us   “  (  O  ‘ (  bday  ‘ 𝐴 ) ) ) ) | 
						
							| 14 | 12 13 | ax-mp | ⊢ (  -us   “  (  R  ‘ 𝐴 ) )  ⊆  (  -us   “  (  O  ‘ (  bday  ‘ 𝐴 ) ) ) | 
						
							| 15 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  (  O  ‘ (  bday  ‘ 𝐴 ) ) )  →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) ) | 
						
							| 16 |  | oldssno | ⊢ (  O  ‘ (  bday  ‘ 𝐴 ) )  ⊆   No | 
						
							| 17 | 16 | sseli | ⊢ ( 𝑎  ∈  (  O  ‘ (  bday  ‘ 𝐴 ) )  →  𝑎  ∈   No  ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  (  O  ‘ (  bday  ‘ 𝐴 ) ) )  →  𝑎  ∈   No  ) | 
						
							| 19 |  | 0sno | ⊢  0s   ∈   No | 
						
							| 20 | 19 | a1i | ⊢ ( ( 𝜑  ∧  𝑎  ∈  (  O  ‘ (  bday  ‘ 𝐴 ) ) )  →   0s   ∈   No  ) | 
						
							| 21 |  | bday0s | ⊢ (  bday  ‘  0s  )  =  ∅ | 
						
							| 22 | 21 | uneq2i | ⊢ ( (  bday  ‘ 𝑎 )  ∪  (  bday  ‘  0s  ) )  =  ( (  bday  ‘ 𝑎 )  ∪  ∅ ) | 
						
							| 23 |  | un0 | ⊢ ( (  bday  ‘ 𝑎 )  ∪  ∅ )  =  (  bday  ‘ 𝑎 ) | 
						
							| 24 | 22 23 | eqtri | ⊢ ( (  bday  ‘ 𝑎 )  ∪  (  bday  ‘  0s  ) )  =  (  bday  ‘ 𝑎 ) | 
						
							| 25 |  | oldbdayim | ⊢ ( 𝑎  ∈  (  O  ‘ (  bday  ‘ 𝐴 ) )  →  (  bday  ‘ 𝑎 )  ∈  (  bday  ‘ 𝐴 ) ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  (  O  ‘ (  bday  ‘ 𝐴 ) ) )  →  (  bday  ‘ 𝑎 )  ∈  (  bday  ‘ 𝐴 ) ) | 
						
							| 27 |  | elun1 | ⊢ ( (  bday  ‘ 𝑎 )  ∈  (  bday  ‘ 𝐴 )  →  (  bday  ‘ 𝑎 )  ∈  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) ) ) | 
						
							| 28 | 26 27 | syl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  (  O  ‘ (  bday  ‘ 𝐴 ) ) )  →  (  bday  ‘ 𝑎 )  ∈  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) ) ) | 
						
							| 29 | 24 28 | eqeltrid | ⊢ ( ( 𝜑  ∧  𝑎  ∈  (  O  ‘ (  bday  ‘ 𝐴 ) ) )  →  ( (  bday  ‘ 𝑎 )  ∪  (  bday  ‘  0s  ) )  ∈  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) ) ) | 
						
							| 30 | 15 18 20 29 | negsproplem1 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  (  O  ‘ (  bday  ‘ 𝐴 ) ) )  →  ( (  -us  ‘ 𝑎 )  ∈   No   ∧  ( 𝑎  <s   0s   →  (  -us  ‘  0s  )  <s  (  -us  ‘ 𝑎 ) ) ) ) | 
						
							| 31 | 30 | simpld | ⊢ ( ( 𝜑  ∧  𝑎  ∈  (  O  ‘ (  bday  ‘ 𝐴 ) ) )  →  (  -us  ‘ 𝑎 )  ∈   No  ) | 
						
							| 32 | 31 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  (  O  ‘ (  bday  ‘ 𝐴 ) ) (  -us  ‘ 𝑎 )  ∈   No  ) | 
						
							| 33 | 3 | fndmi | ⊢ dom   -us   =   No | 
						
							| 34 | 16 33 | sseqtrri | ⊢ (  O  ‘ (  bday  ‘ 𝐴 ) )  ⊆  dom   -us | 
						
							| 35 |  | funimass4 | ⊢ ( ( Fun   -us   ∧  (  O  ‘ (  bday  ‘ 𝐴 ) )  ⊆  dom   -us  )  →  ( (  -us   “  (  O  ‘ (  bday  ‘ 𝐴 ) ) )  ⊆   No   ↔  ∀ 𝑎  ∈  (  O  ‘ (  bday  ‘ 𝐴 ) ) (  -us  ‘ 𝑎 )  ∈   No  ) ) | 
						
							| 36 | 5 34 35 | mp2an | ⊢ ( (  -us   “  (  O  ‘ (  bday  ‘ 𝐴 ) ) )  ⊆   No   ↔  ∀ 𝑎  ∈  (  O  ‘ (  bday  ‘ 𝐴 ) ) (  -us  ‘ 𝑎 )  ∈   No  ) | 
						
							| 37 | 32 36 | sylibr | ⊢ ( 𝜑  →  (  -us   “  (  O  ‘ (  bday  ‘ 𝐴 ) ) )  ⊆   No  ) | 
						
							| 38 | 14 37 | sstrid | ⊢ ( 𝜑  →  (  -us   “  (  R  ‘ 𝐴 ) )  ⊆   No  ) | 
						
							| 39 |  | leftssold | ⊢ (  L  ‘ 𝐴 )  ⊆  (  O  ‘ (  bday  ‘ 𝐴 ) ) | 
						
							| 40 |  | imass2 | ⊢ ( (  L  ‘ 𝐴 )  ⊆  (  O  ‘ (  bday  ‘ 𝐴 ) )  →  (  -us   “  (  L  ‘ 𝐴 ) )  ⊆  (  -us   “  (  O  ‘ (  bday  ‘ 𝐴 ) ) ) ) | 
						
							| 41 | 39 40 | ax-mp | ⊢ (  -us   “  (  L  ‘ 𝐴 ) )  ⊆  (  -us   “  (  O  ‘ (  bday  ‘ 𝐴 ) ) ) | 
						
							| 42 | 41 37 | sstrid | ⊢ ( 𝜑  →  (  -us   “  (  L  ‘ 𝐴 ) )  ⊆   No  ) | 
						
							| 43 |  | rightssno | ⊢ (  R  ‘ 𝐴 )  ⊆   No | 
						
							| 44 |  | fvelimab | ⊢ ( (  -us   Fn   No   ∧  (  R  ‘ 𝐴 )  ⊆   No  )  →  ( 𝑎  ∈  (  -us   “  (  R  ‘ 𝐴 ) )  ↔  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) (  -us  ‘ 𝑥𝑅 )  =  𝑎 ) ) | 
						
							| 45 | 3 43 44 | mp2an | ⊢ ( 𝑎  ∈  (  -us   “  (  R  ‘ 𝐴 ) )  ↔  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) (  -us  ‘ 𝑥𝑅 )  =  𝑎 ) | 
						
							| 46 |  | leftssno | ⊢ (  L  ‘ 𝐴 )  ⊆   No | 
						
							| 47 |  | fvelimab | ⊢ ( (  -us   Fn   No   ∧  (  L  ‘ 𝐴 )  ⊆   No  )  →  ( 𝑏  ∈  (  -us   “  (  L  ‘ 𝐴 ) )  ↔  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝐴 ) (  -us  ‘ 𝑥𝐿 )  =  𝑏 ) ) | 
						
							| 48 | 3 46 47 | mp2an | ⊢ ( 𝑏  ∈  (  -us   “  (  L  ‘ 𝐴 ) )  ↔  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝐴 ) (  -us  ‘ 𝑥𝐿 )  =  𝑏 ) | 
						
							| 49 | 45 48 | anbi12i | ⊢ ( ( 𝑎  ∈  (  -us   “  (  R  ‘ 𝐴 ) )  ∧  𝑏  ∈  (  -us   “  (  L  ‘ 𝐴 ) ) )  ↔  ( ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) (  -us  ‘ 𝑥𝑅 )  =  𝑎  ∧  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝐴 ) (  -us  ‘ 𝑥𝐿 )  =  𝑏 ) ) | 
						
							| 50 |  | reeanv | ⊢ ( ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑥𝐿  ∈  (  L  ‘ 𝐴 ) ( (  -us  ‘ 𝑥𝑅 )  =  𝑎  ∧  (  -us  ‘ 𝑥𝐿 )  =  𝑏 )  ↔  ( ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) (  -us  ‘ 𝑥𝑅 )  =  𝑎  ∧  ∃ 𝑥𝐿  ∈  (  L  ‘ 𝐴 ) (  -us  ‘ 𝑥𝐿 )  =  𝑏 ) ) | 
						
							| 51 | 49 50 | bitr4i | ⊢ ( ( 𝑎  ∈  (  -us   “  (  R  ‘ 𝐴 ) )  ∧  𝑏  ∈  (  -us   “  (  L  ‘ 𝐴 ) ) )  ↔  ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑥𝐿  ∈  (  L  ‘ 𝐴 ) ( (  -us  ‘ 𝑥𝑅 )  =  𝑎  ∧  (  -us  ‘ 𝑥𝐿 )  =  𝑏 ) ) | 
						
							| 52 |  | lltropt | ⊢ (  L  ‘ 𝐴 )  <<s  (  R  ‘ 𝐴 ) | 
						
							| 53 | 52 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑥𝑅  ∈  (  R  ‘ 𝐴 )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝐴 ) ) )  →  (  L  ‘ 𝐴 )  <<s  (  R  ‘ 𝐴 ) ) | 
						
							| 54 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑥𝑅  ∈  (  R  ‘ 𝐴 )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝐴 ) ) )  →  𝑥𝐿  ∈  (  L  ‘ 𝐴 ) ) | 
						
							| 55 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑥𝑅  ∈  (  R  ‘ 𝐴 )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝐴 ) ) )  →  𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ) | 
						
							| 56 | 53 54 55 | ssltsepcd | ⊢ ( ( 𝜑  ∧  ( 𝑥𝑅  ∈  (  R  ‘ 𝐴 )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝐴 ) ) )  →  𝑥𝐿  <s  𝑥𝑅 ) | 
						
							| 57 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥𝑅  ∈  (  R  ‘ 𝐴 )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝐴 ) ) )  →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) ) | 
						
							| 58 | 46 | sseli | ⊢ ( 𝑥𝐿  ∈  (  L  ‘ 𝐴 )  →  𝑥𝐿  ∈   No  ) | 
						
							| 59 | 58 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑥𝑅  ∈  (  R  ‘ 𝐴 )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝐴 ) ) )  →  𝑥𝐿  ∈   No  ) | 
						
							| 60 | 43 | sseli | ⊢ ( 𝑥𝑅  ∈  (  R  ‘ 𝐴 )  →  𝑥𝑅  ∈   No  ) | 
						
							| 61 | 60 | adantr | ⊢ ( ( 𝑥𝑅  ∈  (  R  ‘ 𝐴 )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝐴 ) )  →  𝑥𝑅  ∈   No  ) | 
						
							| 62 | 61 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑥𝑅  ∈  (  R  ‘ 𝐴 )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝐴 ) ) )  →  𝑥𝑅  ∈   No  ) | 
						
							| 63 | 39 | sseli | ⊢ ( 𝑥𝐿  ∈  (  L  ‘ 𝐴 )  →  𝑥𝐿  ∈  (  O  ‘ (  bday  ‘ 𝐴 ) ) ) | 
						
							| 64 | 63 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑥𝑅  ∈  (  R  ‘ 𝐴 )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝐴 ) ) )  →  𝑥𝐿  ∈  (  O  ‘ (  bday  ‘ 𝐴 ) ) ) | 
						
							| 65 |  | oldbdayim | ⊢ ( 𝑥𝐿  ∈  (  O  ‘ (  bday  ‘ 𝐴 ) )  →  (  bday  ‘ 𝑥𝐿 )  ∈  (  bday  ‘ 𝐴 ) ) | 
						
							| 66 | 64 65 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑥𝑅  ∈  (  R  ‘ 𝐴 )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝐴 ) ) )  →  (  bday  ‘ 𝑥𝐿 )  ∈  (  bday  ‘ 𝐴 ) ) | 
						
							| 67 | 12 | a1i | ⊢ ( 𝜑  →  (  R  ‘ 𝐴 )  ⊆  (  O  ‘ (  bday  ‘ 𝐴 ) ) ) | 
						
							| 68 | 67 | sselda | ⊢ ( ( 𝜑  ∧  𝑥𝑅  ∈  (  R  ‘ 𝐴 ) )  →  𝑥𝑅  ∈  (  O  ‘ (  bday  ‘ 𝐴 ) ) ) | 
						
							| 69 | 68 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥𝑅  ∈  (  R  ‘ 𝐴 )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝐴 ) ) )  →  𝑥𝑅  ∈  (  O  ‘ (  bday  ‘ 𝐴 ) ) ) | 
						
							| 70 |  | oldbdayim | ⊢ ( 𝑥𝑅  ∈  (  O  ‘ (  bday  ‘ 𝐴 ) )  →  (  bday  ‘ 𝑥𝑅 )  ∈  (  bday  ‘ 𝐴 ) ) | 
						
							| 71 | 69 70 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑥𝑅  ∈  (  R  ‘ 𝐴 )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝐴 ) ) )  →  (  bday  ‘ 𝑥𝑅 )  ∈  (  bday  ‘ 𝐴 ) ) | 
						
							| 72 |  | bdayelon | ⊢ (  bday  ‘ 𝑥𝐿 )  ∈  On | 
						
							| 73 |  | bdayelon | ⊢ (  bday  ‘ 𝑥𝑅 )  ∈  On | 
						
							| 74 |  | bdayelon | ⊢ (  bday  ‘ 𝐴 )  ∈  On | 
						
							| 75 |  | onunel | ⊢ ( ( (  bday  ‘ 𝑥𝐿 )  ∈  On  ∧  (  bday  ‘ 𝑥𝑅 )  ∈  On  ∧  (  bday  ‘ 𝐴 )  ∈  On )  →  ( ( (  bday  ‘ 𝑥𝐿 )  ∪  (  bday  ‘ 𝑥𝑅 ) )  ∈  (  bday  ‘ 𝐴 )  ↔  ( (  bday  ‘ 𝑥𝐿 )  ∈  (  bday  ‘ 𝐴 )  ∧  (  bday  ‘ 𝑥𝑅 )  ∈  (  bday  ‘ 𝐴 ) ) ) ) | 
						
							| 76 | 72 73 74 75 | mp3an | ⊢ ( ( (  bday  ‘ 𝑥𝐿 )  ∪  (  bday  ‘ 𝑥𝑅 ) )  ∈  (  bday  ‘ 𝐴 )  ↔  ( (  bday  ‘ 𝑥𝐿 )  ∈  (  bday  ‘ 𝐴 )  ∧  (  bday  ‘ 𝑥𝑅 )  ∈  (  bday  ‘ 𝐴 ) ) ) | 
						
							| 77 | 66 71 76 | sylanbrc | ⊢ ( ( 𝜑  ∧  ( 𝑥𝑅  ∈  (  R  ‘ 𝐴 )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝐴 ) ) )  →  ( (  bday  ‘ 𝑥𝐿 )  ∪  (  bday  ‘ 𝑥𝑅 ) )  ∈  (  bday  ‘ 𝐴 ) ) | 
						
							| 78 |  | elun1 | ⊢ ( ( (  bday  ‘ 𝑥𝐿 )  ∪  (  bday  ‘ 𝑥𝑅 ) )  ∈  (  bday  ‘ 𝐴 )  →  ( (  bday  ‘ 𝑥𝐿 )  ∪  (  bday  ‘ 𝑥𝑅 ) )  ∈  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) ) ) | 
						
							| 79 | 77 78 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑥𝑅  ∈  (  R  ‘ 𝐴 )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝐴 ) ) )  →  ( (  bday  ‘ 𝑥𝐿 )  ∪  (  bday  ‘ 𝑥𝑅 ) )  ∈  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) ) ) | 
						
							| 80 | 57 59 62 79 | negsproplem1 | ⊢ ( ( 𝜑  ∧  ( 𝑥𝑅  ∈  (  R  ‘ 𝐴 )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝐴 ) ) )  →  ( (  -us  ‘ 𝑥𝐿 )  ∈   No   ∧  ( 𝑥𝐿  <s  𝑥𝑅  →  (  -us  ‘ 𝑥𝑅 )  <s  (  -us  ‘ 𝑥𝐿 ) ) ) ) | 
						
							| 81 | 80 | simprd | ⊢ ( ( 𝜑  ∧  ( 𝑥𝑅  ∈  (  R  ‘ 𝐴 )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝐴 ) ) )  →  ( 𝑥𝐿  <s  𝑥𝑅  →  (  -us  ‘ 𝑥𝑅 )  <s  (  -us  ‘ 𝑥𝐿 ) ) ) | 
						
							| 82 | 56 81 | mpd | ⊢ ( ( 𝜑  ∧  ( 𝑥𝑅  ∈  (  R  ‘ 𝐴 )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝐴 ) ) )  →  (  -us  ‘ 𝑥𝑅 )  <s  (  -us  ‘ 𝑥𝐿 ) ) | 
						
							| 83 |  | breq12 | ⊢ ( ( (  -us  ‘ 𝑥𝑅 )  =  𝑎  ∧  (  -us  ‘ 𝑥𝐿 )  =  𝑏 )  →  ( (  -us  ‘ 𝑥𝑅 )  <s  (  -us  ‘ 𝑥𝐿 )  ↔  𝑎  <s  𝑏 ) ) | 
						
							| 84 | 82 83 | syl5ibcom | ⊢ ( ( 𝜑  ∧  ( 𝑥𝑅  ∈  (  R  ‘ 𝐴 )  ∧  𝑥𝐿  ∈  (  L  ‘ 𝐴 ) ) )  →  ( ( (  -us  ‘ 𝑥𝑅 )  =  𝑎  ∧  (  -us  ‘ 𝑥𝐿 )  =  𝑏 )  →  𝑎  <s  𝑏 ) ) | 
						
							| 85 | 84 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑥𝑅  ∈  (  R  ‘ 𝐴 ) ∃ 𝑥𝐿  ∈  (  L  ‘ 𝐴 ) ( (  -us  ‘ 𝑥𝑅 )  =  𝑎  ∧  (  -us  ‘ 𝑥𝐿 )  =  𝑏 )  →  𝑎  <s  𝑏 ) ) | 
						
							| 86 | 51 85 | biimtrid | ⊢ ( 𝜑  →  ( ( 𝑎  ∈  (  -us   “  (  R  ‘ 𝐴 ) )  ∧  𝑏  ∈  (  -us   “  (  L  ‘ 𝐴 ) ) )  →  𝑎  <s  𝑏 ) ) | 
						
							| 87 | 86 | 3impib | ⊢ ( ( 𝜑  ∧  𝑎  ∈  (  -us   “  (  R  ‘ 𝐴 ) )  ∧  𝑏  ∈  (  -us   “  (  L  ‘ 𝐴 ) ) )  →  𝑎  <s  𝑏 ) | 
						
							| 88 | 8 11 38 42 87 | ssltd | ⊢ ( 𝜑  →  (  -us   “  (  R  ‘ 𝐴 ) )  <<s  (  -us   “  (  L  ‘ 𝐴 ) ) ) |