| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negsproplem.1 | ⊢ ( 𝜑  →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) ) | 
						
							| 2 |  | negsproplem4.1 | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
						
							| 3 |  | negsproplem4.2 | ⊢ ( 𝜑  →  𝐵  ∈   No  ) | 
						
							| 4 |  | negsproplem4.3 | ⊢ ( 𝜑  →  𝐴  <s  𝐵 ) | 
						
							| 5 |  | negsproplem4.4 | ⊢ ( 𝜑  →  (  bday  ‘ 𝐴 )  ∈  (  bday  ‘ 𝐵 ) ) | 
						
							| 6 |  | uncom | ⊢ ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) )  =  ( (  bday  ‘ 𝐵 )  ∪  (  bday  ‘ 𝐴 ) ) | 
						
							| 7 | 6 | eleq2i | ⊢ ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) )  ↔  ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝐵 )  ∪  (  bday  ‘ 𝐴 ) ) ) | 
						
							| 8 | 7 | imbi1i | ⊢ ( ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) )  ↔  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝐵 )  ∪  (  bday  ‘ 𝐴 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) ) | 
						
							| 9 | 8 | 2ralbii | ⊢ ( ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) )  ↔  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝐵 )  ∪  (  bday  ‘ 𝐴 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) ) | 
						
							| 10 | 1 9 | sylib | ⊢ ( 𝜑  →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝐵 )  ∪  (  bday  ‘ 𝐴 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) ) | 
						
							| 11 | 10 3 | negsproplem3 | ⊢ ( 𝜑  →  ( (  -us  ‘ 𝐵 )  ∈   No   ∧  (  -us   “  (  R  ‘ 𝐵 ) )  <<s  { (  -us  ‘ 𝐵 ) }  ∧  { (  -us  ‘ 𝐵 ) }  <<s  (  -us   “  (  L  ‘ 𝐵 ) ) ) ) | 
						
							| 12 | 11 | simp3d | ⊢ ( 𝜑  →  { (  -us  ‘ 𝐵 ) }  <<s  (  -us   “  (  L  ‘ 𝐵 ) ) ) | 
						
							| 13 |  | fvex | ⊢ (  -us  ‘ 𝐵 )  ∈  V | 
						
							| 14 | 13 | snid | ⊢ (  -us  ‘ 𝐵 )  ∈  { (  -us  ‘ 𝐵 ) } | 
						
							| 15 | 14 | a1i | ⊢ ( 𝜑  →  (  -us  ‘ 𝐵 )  ∈  { (  -us  ‘ 𝐵 ) } ) | 
						
							| 16 |  | negsfn | ⊢  -us   Fn   No | 
						
							| 17 |  | leftssno | ⊢ (  L  ‘ 𝐵 )  ⊆   No | 
						
							| 18 |  | bdayelon | ⊢ (  bday  ‘ 𝐵 )  ∈  On | 
						
							| 19 |  | oldbday | ⊢ ( ( (  bday  ‘ 𝐵 )  ∈  On  ∧  𝐴  ∈   No  )  →  ( 𝐴  ∈  (  O  ‘ (  bday  ‘ 𝐵 ) )  ↔  (  bday  ‘ 𝐴 )  ∈  (  bday  ‘ 𝐵 ) ) ) | 
						
							| 20 | 18 2 19 | sylancr | ⊢ ( 𝜑  →  ( 𝐴  ∈  (  O  ‘ (  bday  ‘ 𝐵 ) )  ↔  (  bday  ‘ 𝐴 )  ∈  (  bday  ‘ 𝐵 ) ) ) | 
						
							| 21 | 5 20 | mpbird | ⊢ ( 𝜑  →  𝐴  ∈  (  O  ‘ (  bday  ‘ 𝐵 ) ) ) | 
						
							| 22 |  | breq1 | ⊢ ( 𝑎  =  𝐴  →  ( 𝑎  <s  𝐵  ↔  𝐴  <s  𝐵 ) ) | 
						
							| 23 |  | leftval | ⊢ (  L  ‘ 𝐵 )  =  { 𝑎  ∈  (  O  ‘ (  bday  ‘ 𝐵 ) )  ∣  𝑎  <s  𝐵 } | 
						
							| 24 | 22 23 | elrab2 | ⊢ ( 𝐴  ∈  (  L  ‘ 𝐵 )  ↔  ( 𝐴  ∈  (  O  ‘ (  bday  ‘ 𝐵 ) )  ∧  𝐴  <s  𝐵 ) ) | 
						
							| 25 | 21 4 24 | sylanbrc | ⊢ ( 𝜑  →  𝐴  ∈  (  L  ‘ 𝐵 ) ) | 
						
							| 26 |  | fnfvima | ⊢ ( (  -us   Fn   No   ∧  (  L  ‘ 𝐵 )  ⊆   No   ∧  𝐴  ∈  (  L  ‘ 𝐵 ) )  →  (  -us  ‘ 𝐴 )  ∈  (  -us   “  (  L  ‘ 𝐵 ) ) ) | 
						
							| 27 | 16 17 25 26 | mp3an12i | ⊢ ( 𝜑  →  (  -us  ‘ 𝐴 )  ∈  (  -us   “  (  L  ‘ 𝐵 ) ) ) | 
						
							| 28 | 12 15 27 | ssltsepcd | ⊢ ( 𝜑  →  (  -us  ‘ 𝐵 )  <s  (  -us  ‘ 𝐴 ) ) |