| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negsproplem.1 |  |-  ( ph -> A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x  ( -us ` y )  | 
						
							| 2 |  | negsproplem4.1 |  |-  ( ph -> A e. No ) | 
						
							| 3 |  | negsproplem4.2 |  |-  ( ph -> B e. No ) | 
						
							| 4 |  | negsproplem4.3 |  |-  ( ph -> A  | 
						
							| 5 |  | negsproplem4.4 |  |-  ( ph -> ( bday ` A ) e. ( bday ` B ) ) | 
						
							| 6 |  | uncom |  |-  ( ( bday ` A ) u. ( bday ` B ) ) = ( ( bday ` B ) u. ( bday ` A ) ) | 
						
							| 7 | 6 | eleq2i |  |-  ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) <-> ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` B ) u. ( bday ` A ) ) ) | 
						
							| 8 | 7 | imbi1i |  |-  ( ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x  ( -us ` y )  ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` B ) u. ( bday ` A ) ) -> ( ( -us ` x ) e. No /\ ( x  ( -us ` y )  | 
						
							| 9 | 8 | 2ralbii |  |-  ( A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x  ( -us ` y )  A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` B ) u. ( bday ` A ) ) -> ( ( -us ` x ) e. No /\ ( x  ( -us ` y )  | 
						
							| 10 | 1 9 | sylib |  |-  ( ph -> A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` B ) u. ( bday ` A ) ) -> ( ( -us ` x ) e. No /\ ( x  ( -us ` y )  | 
						
							| 11 | 10 3 | negsproplem3 |  |-  ( ph -> ( ( -us ` B ) e. No /\ ( -us " ( _Right ` B ) ) < | 
						
							| 12 | 11 | simp3d |  |-  ( ph -> { ( -us ` B ) } < | 
						
							| 13 |  | fvex |  |-  ( -us ` B ) e. _V | 
						
							| 14 | 13 | snid |  |-  ( -us ` B ) e. { ( -us ` B ) } | 
						
							| 15 | 14 | a1i |  |-  ( ph -> ( -us ` B ) e. { ( -us ` B ) } ) | 
						
							| 16 |  | negsfn |  |-  -us Fn No | 
						
							| 17 |  | leftssno |  |-  ( _Left ` B ) C_ No | 
						
							| 18 |  | bdayelon |  |-  ( bday ` B ) e. On | 
						
							| 19 |  | oldbday |  |-  ( ( ( bday ` B ) e. On /\ A e. No ) -> ( A e. ( _Old ` ( bday ` B ) ) <-> ( bday ` A ) e. ( bday ` B ) ) ) | 
						
							| 20 | 18 2 19 | sylancr |  |-  ( ph -> ( A e. ( _Old ` ( bday ` B ) ) <-> ( bday ` A ) e. ( bday ` B ) ) ) | 
						
							| 21 | 5 20 | mpbird |  |-  ( ph -> A e. ( _Old ` ( bday ` B ) ) ) | 
						
							| 22 |  | breq1 |  |-  ( a = A -> ( a  A  | 
						
							| 23 |  | leftval |  |-  ( _Left ` B ) = { a e. ( _Old ` ( bday ` B ) ) | a  | 
						
							| 24 | 22 23 | elrab2 |  |-  ( A e. ( _Left ` B ) <-> ( A e. ( _Old ` ( bday ` B ) ) /\ A  | 
						
							| 25 | 21 4 24 | sylanbrc |  |-  ( ph -> A e. ( _Left ` B ) ) | 
						
							| 26 |  | fnfvima |  |-  ( ( -us Fn No /\ ( _Left ` B ) C_ No /\ A e. ( _Left ` B ) ) -> ( -us ` A ) e. ( -us " ( _Left ` B ) ) ) | 
						
							| 27 | 16 17 25 26 | mp3an12i |  |-  ( ph -> ( -us ` A ) e. ( -us " ( _Left ` B ) ) ) | 
						
							| 28 | 12 15 27 | ssltsepcd |  |-  ( ph -> ( -us ` B )  |