| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negsproplem.1 |  |-  ( ph -> A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x  ( -us ` y )  | 
						
							| 2 |  | negsproplem4.1 |  |-  ( ph -> A e. No ) | 
						
							| 3 |  | negsproplem4.2 |  |-  ( ph -> B e. No ) | 
						
							| 4 |  | negsproplem4.3 |  |-  ( ph -> A  | 
						
							| 5 |  | negsproplem5.4 |  |-  ( ph -> ( bday ` B ) e. ( bday ` A ) ) | 
						
							| 6 | 1 2 | negsproplem3 |  |-  ( ph -> ( ( -us ` A ) e. No /\ ( -us " ( _Right ` A ) ) < | 
						
							| 7 | 6 | simp2d |  |-  ( ph -> ( -us " ( _Right ` A ) ) < | 
						
							| 8 |  | negsfn |  |-  -us Fn No | 
						
							| 9 |  | rightssno |  |-  ( _Right ` A ) C_ No | 
						
							| 10 |  | bdayelon |  |-  ( bday ` A ) e. On | 
						
							| 11 |  | oldbday |  |-  ( ( ( bday ` A ) e. On /\ B e. No ) -> ( B e. ( _Old ` ( bday ` A ) ) <-> ( bday ` B ) e. ( bday ` A ) ) ) | 
						
							| 12 | 10 3 11 | sylancr |  |-  ( ph -> ( B e. ( _Old ` ( bday ` A ) ) <-> ( bday ` B ) e. ( bday ` A ) ) ) | 
						
							| 13 | 5 12 | mpbird |  |-  ( ph -> B e. ( _Old ` ( bday ` A ) ) ) | 
						
							| 14 |  | breq2 |  |-  ( b = B -> ( A  A  | 
						
							| 15 |  | rightval |  |-  ( _Right ` A ) = { b e. ( _Old ` ( bday ` A ) ) | A  | 
						
							| 16 | 14 15 | elrab2 |  |-  ( B e. ( _Right ` A ) <-> ( B e. ( _Old ` ( bday ` A ) ) /\ A  | 
						
							| 17 | 13 4 16 | sylanbrc |  |-  ( ph -> B e. ( _Right ` A ) ) | 
						
							| 18 |  | fnfvima |  |-  ( ( -us Fn No /\ ( _Right ` A ) C_ No /\ B e. ( _Right ` A ) ) -> ( -us ` B ) e. ( -us " ( _Right ` A ) ) ) | 
						
							| 19 | 8 9 17 18 | mp3an12i |  |-  ( ph -> ( -us ` B ) e. ( -us " ( _Right ` A ) ) ) | 
						
							| 20 |  | fvex |  |-  ( -us ` A ) e. _V | 
						
							| 21 | 20 | snid |  |-  ( -us ` A ) e. { ( -us ` A ) } | 
						
							| 22 | 21 | a1i |  |-  ( ph -> ( -us ` A ) e. { ( -us ` A ) } ) | 
						
							| 23 | 7 19 22 | ssltsepcd |  |-  ( ph -> ( -us ` B )  |