| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negsproplem.1 | ⊢ ( 𝜑  →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) ) | 
						
							| 2 |  | negsproplem4.1 | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
						
							| 3 |  | negsproplem4.2 | ⊢ ( 𝜑  →  𝐵  ∈   No  ) | 
						
							| 4 |  | negsproplem4.3 | ⊢ ( 𝜑  →  𝐴  <s  𝐵 ) | 
						
							| 5 |  | negsproplem5.4 | ⊢ ( 𝜑  →  (  bday  ‘ 𝐵 )  ∈  (  bday  ‘ 𝐴 ) ) | 
						
							| 6 | 1 2 | negsproplem3 | ⊢ ( 𝜑  →  ( (  -us  ‘ 𝐴 )  ∈   No   ∧  (  -us   “  (  R  ‘ 𝐴 ) )  <<s  { (  -us  ‘ 𝐴 ) }  ∧  { (  -us  ‘ 𝐴 ) }  <<s  (  -us   “  (  L  ‘ 𝐴 ) ) ) ) | 
						
							| 7 | 6 | simp2d | ⊢ ( 𝜑  →  (  -us   “  (  R  ‘ 𝐴 ) )  <<s  { (  -us  ‘ 𝐴 ) } ) | 
						
							| 8 |  | negsfn | ⊢  -us   Fn   No | 
						
							| 9 |  | rightssno | ⊢ (  R  ‘ 𝐴 )  ⊆   No | 
						
							| 10 |  | bdayelon | ⊢ (  bday  ‘ 𝐴 )  ∈  On | 
						
							| 11 |  | oldbday | ⊢ ( ( (  bday  ‘ 𝐴 )  ∈  On  ∧  𝐵  ∈   No  )  →  ( 𝐵  ∈  (  O  ‘ (  bday  ‘ 𝐴 ) )  ↔  (  bday  ‘ 𝐵 )  ∈  (  bday  ‘ 𝐴 ) ) ) | 
						
							| 12 | 10 3 11 | sylancr | ⊢ ( 𝜑  →  ( 𝐵  ∈  (  O  ‘ (  bday  ‘ 𝐴 ) )  ↔  (  bday  ‘ 𝐵 )  ∈  (  bday  ‘ 𝐴 ) ) ) | 
						
							| 13 | 5 12 | mpbird | ⊢ ( 𝜑  →  𝐵  ∈  (  O  ‘ (  bday  ‘ 𝐴 ) ) ) | 
						
							| 14 |  | breq2 | ⊢ ( 𝑏  =  𝐵  →  ( 𝐴  <s  𝑏  ↔  𝐴  <s  𝐵 ) ) | 
						
							| 15 |  | rightval | ⊢ (  R  ‘ 𝐴 )  =  { 𝑏  ∈  (  O  ‘ (  bday  ‘ 𝐴 ) )  ∣  𝐴  <s  𝑏 } | 
						
							| 16 | 14 15 | elrab2 | ⊢ ( 𝐵  ∈  (  R  ‘ 𝐴 )  ↔  ( 𝐵  ∈  (  O  ‘ (  bday  ‘ 𝐴 ) )  ∧  𝐴  <s  𝐵 ) ) | 
						
							| 17 | 13 4 16 | sylanbrc | ⊢ ( 𝜑  →  𝐵  ∈  (  R  ‘ 𝐴 ) ) | 
						
							| 18 |  | fnfvima | ⊢ ( (  -us   Fn   No   ∧  (  R  ‘ 𝐴 )  ⊆   No   ∧  𝐵  ∈  (  R  ‘ 𝐴 ) )  →  (  -us  ‘ 𝐵 )  ∈  (  -us   “  (  R  ‘ 𝐴 ) ) ) | 
						
							| 19 | 8 9 17 18 | mp3an12i | ⊢ ( 𝜑  →  (  -us  ‘ 𝐵 )  ∈  (  -us   “  (  R  ‘ 𝐴 ) ) ) | 
						
							| 20 |  | fvex | ⊢ (  -us  ‘ 𝐴 )  ∈  V | 
						
							| 21 | 20 | snid | ⊢ (  -us  ‘ 𝐴 )  ∈  { (  -us  ‘ 𝐴 ) } | 
						
							| 22 | 21 | a1i | ⊢ ( 𝜑  →  (  -us  ‘ 𝐴 )  ∈  { (  -us  ‘ 𝐴 ) } ) | 
						
							| 23 | 7 19 22 | ssltsepcd | ⊢ ( 𝜑  →  (  -us  ‘ 𝐵 )  <s  (  -us  ‘ 𝐴 ) ) |