| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negsproplem.1 | ⊢ ( 𝜑  →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) ) | 
						
							| 2 |  | negsproplem4.1 | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
						
							| 3 |  | negsproplem4.2 | ⊢ ( 𝜑  →  𝐵  ∈   No  ) | 
						
							| 4 |  | negsproplem4.3 | ⊢ ( 𝜑  →  𝐴  <s  𝐵 ) | 
						
							| 5 |  | negsproplem6.4 | ⊢ ( 𝜑  →  (  bday  ‘ 𝐴 )  =  (  bday  ‘ 𝐵 ) ) | 
						
							| 6 |  | nodense | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  ( (  bday  ‘ 𝐴 )  =  (  bday  ‘ 𝐵 )  ∧  𝐴  <s  𝐵 ) )  →  ∃ 𝑑  ∈   No  ( (  bday  ‘ 𝑑 )  ∈  (  bday  ‘ 𝐴 )  ∧  𝐴  <s  𝑑  ∧  𝑑  <s  𝐵 ) ) | 
						
							| 7 | 2 3 5 4 6 | syl22anc | ⊢ ( 𝜑  →  ∃ 𝑑  ∈   No  ( (  bday  ‘ 𝑑 )  ∈  (  bday  ‘ 𝐴 )  ∧  𝐴  <s  𝑑  ∧  𝑑  <s  𝐵 ) ) | 
						
							| 8 |  | uncom | ⊢ ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) )  =  ( (  bday  ‘ 𝐵 )  ∪  (  bday  ‘ 𝐴 ) ) | 
						
							| 9 | 8 | eleq2i | ⊢ ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) )  ↔  ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝐵 )  ∪  (  bday  ‘ 𝐴 ) ) ) | 
						
							| 10 | 9 | imbi1i | ⊢ ( ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) )  ↔  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝐵 )  ∪  (  bday  ‘ 𝐴 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) ) | 
						
							| 11 | 10 | 2ralbii | ⊢ ( ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) )  ↔  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝐵 )  ∪  (  bday  ‘ 𝐴 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) ) | 
						
							| 12 | 1 11 | sylib | ⊢ ( 𝜑  →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝐵 )  ∪  (  bday  ‘ 𝐴 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) ) | 
						
							| 13 | 12 3 | negsproplem3 | ⊢ ( 𝜑  →  ( (  -us  ‘ 𝐵 )  ∈   No   ∧  (  -us   “  (  R  ‘ 𝐵 ) )  <<s  { (  -us  ‘ 𝐵 ) }  ∧  { (  -us  ‘ 𝐵 ) }  <<s  (  -us   “  (  L  ‘ 𝐵 ) ) ) ) | 
						
							| 14 | 13 | simp1d | ⊢ ( 𝜑  →  (  -us  ‘ 𝐵 )  ∈   No  ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈   No   ∧  ( (  bday  ‘ 𝑑 )  ∈  (  bday  ‘ 𝐴 )  ∧  𝐴  <s  𝑑  ∧  𝑑  <s  𝐵 ) ) )  →  (  -us  ‘ 𝐵 )  ∈   No  ) | 
						
							| 16 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈   No   ∧  ( (  bday  ‘ 𝑑 )  ∈  (  bday  ‘ 𝐴 )  ∧  𝐴  <s  𝑑  ∧  𝑑  <s  𝐵 ) ) )  →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) ) | 
						
							| 17 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈   No   ∧  ( (  bday  ‘ 𝑑 )  ∈  (  bday  ‘ 𝐴 )  ∧  𝐴  <s  𝑑  ∧  𝑑  <s  𝐵 ) ) )  →  𝑑  ∈   No  ) | 
						
							| 18 |  | 0sno | ⊢  0s   ∈   No | 
						
							| 19 | 18 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈   No   ∧  ( (  bday  ‘ 𝑑 )  ∈  (  bday  ‘ 𝐴 )  ∧  𝐴  <s  𝑑  ∧  𝑑  <s  𝐵 ) ) )  →   0s   ∈   No  ) | 
						
							| 20 |  | bday0s | ⊢ (  bday  ‘  0s  )  =  ∅ | 
						
							| 21 | 20 | uneq2i | ⊢ ( (  bday  ‘ 𝑑 )  ∪  (  bday  ‘  0s  ) )  =  ( (  bday  ‘ 𝑑 )  ∪  ∅ ) | 
						
							| 22 |  | un0 | ⊢ ( (  bday  ‘ 𝑑 )  ∪  ∅ )  =  (  bday  ‘ 𝑑 ) | 
						
							| 23 | 21 22 | eqtri | ⊢ ( (  bday  ‘ 𝑑 )  ∪  (  bday  ‘  0s  ) )  =  (  bday  ‘ 𝑑 ) | 
						
							| 24 |  | simprr1 | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈   No   ∧  ( (  bday  ‘ 𝑑 )  ∈  (  bday  ‘ 𝐴 )  ∧  𝐴  <s  𝑑  ∧  𝑑  <s  𝐵 ) ) )  →  (  bday  ‘ 𝑑 )  ∈  (  bday  ‘ 𝐴 ) ) | 
						
							| 25 |  | elun1 | ⊢ ( (  bday  ‘ 𝑑 )  ∈  (  bday  ‘ 𝐴 )  →  (  bday  ‘ 𝑑 )  ∈  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) ) ) | 
						
							| 26 | 24 25 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈   No   ∧  ( (  bday  ‘ 𝑑 )  ∈  (  bday  ‘ 𝐴 )  ∧  𝐴  <s  𝑑  ∧  𝑑  <s  𝐵 ) ) )  →  (  bday  ‘ 𝑑 )  ∈  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) ) ) | 
						
							| 27 | 23 26 | eqeltrid | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈   No   ∧  ( (  bday  ‘ 𝑑 )  ∈  (  bday  ‘ 𝐴 )  ∧  𝐴  <s  𝑑  ∧  𝑑  <s  𝐵 ) ) )  →  ( (  bday  ‘ 𝑑 )  ∪  (  bday  ‘  0s  ) )  ∈  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) ) ) | 
						
							| 28 | 16 17 19 27 | negsproplem1 | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈   No   ∧  ( (  bday  ‘ 𝑑 )  ∈  (  bday  ‘ 𝐴 )  ∧  𝐴  <s  𝑑  ∧  𝑑  <s  𝐵 ) ) )  →  ( (  -us  ‘ 𝑑 )  ∈   No   ∧  ( 𝑑  <s   0s   →  (  -us  ‘  0s  )  <s  (  -us  ‘ 𝑑 ) ) ) ) | 
						
							| 29 | 28 | simpld | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈   No   ∧  ( (  bday  ‘ 𝑑 )  ∈  (  bday  ‘ 𝐴 )  ∧  𝐴  <s  𝑑  ∧  𝑑  <s  𝐵 ) ) )  →  (  -us  ‘ 𝑑 )  ∈   No  ) | 
						
							| 30 | 1 2 | negsproplem3 | ⊢ ( 𝜑  →  ( (  -us  ‘ 𝐴 )  ∈   No   ∧  (  -us   “  (  R  ‘ 𝐴 ) )  <<s  { (  -us  ‘ 𝐴 ) }  ∧  { (  -us  ‘ 𝐴 ) }  <<s  (  -us   “  (  L  ‘ 𝐴 ) ) ) ) | 
						
							| 31 | 30 | simp1d | ⊢ ( 𝜑  →  (  -us  ‘ 𝐴 )  ∈   No  ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈   No   ∧  ( (  bday  ‘ 𝑑 )  ∈  (  bday  ‘ 𝐴 )  ∧  𝐴  <s  𝑑  ∧  𝑑  <s  𝐵 ) ) )  →  (  -us  ‘ 𝐴 )  ∈   No  ) | 
						
							| 33 | 13 | simp3d | ⊢ ( 𝜑  →  { (  -us  ‘ 𝐵 ) }  <<s  (  -us   “  (  L  ‘ 𝐵 ) ) ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈   No   ∧  ( (  bday  ‘ 𝑑 )  ∈  (  bday  ‘ 𝐴 )  ∧  𝐴  <s  𝑑  ∧  𝑑  <s  𝐵 ) ) )  →  { (  -us  ‘ 𝐵 ) }  <<s  (  -us   “  (  L  ‘ 𝐵 ) ) ) | 
						
							| 35 |  | fvex | ⊢ (  -us  ‘ 𝐵 )  ∈  V | 
						
							| 36 | 35 | snid | ⊢ (  -us  ‘ 𝐵 )  ∈  { (  -us  ‘ 𝐵 ) } | 
						
							| 37 | 36 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈   No   ∧  ( (  bday  ‘ 𝑑 )  ∈  (  bday  ‘ 𝐴 )  ∧  𝐴  <s  𝑑  ∧  𝑑  <s  𝐵 ) ) )  →  (  -us  ‘ 𝐵 )  ∈  { (  -us  ‘ 𝐵 ) } ) | 
						
							| 38 |  | negsfn | ⊢  -us   Fn   No | 
						
							| 39 |  | leftssno | ⊢ (  L  ‘ 𝐵 )  ⊆   No | 
						
							| 40 |  | bdayelon | ⊢ (  bday  ‘ 𝐴 )  ∈  On | 
						
							| 41 |  | oldbday | ⊢ ( ( (  bday  ‘ 𝐴 )  ∈  On  ∧  𝑑  ∈   No  )  →  ( 𝑑  ∈  (  O  ‘ (  bday  ‘ 𝐴 ) )  ↔  (  bday  ‘ 𝑑 )  ∈  (  bday  ‘ 𝐴 ) ) ) | 
						
							| 42 | 40 17 41 | sylancr | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈   No   ∧  ( (  bday  ‘ 𝑑 )  ∈  (  bday  ‘ 𝐴 )  ∧  𝐴  <s  𝑑  ∧  𝑑  <s  𝐵 ) ) )  →  ( 𝑑  ∈  (  O  ‘ (  bday  ‘ 𝐴 ) )  ↔  (  bday  ‘ 𝑑 )  ∈  (  bday  ‘ 𝐴 ) ) ) | 
						
							| 43 | 24 42 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈   No   ∧  ( (  bday  ‘ 𝑑 )  ∈  (  bday  ‘ 𝐴 )  ∧  𝐴  <s  𝑑  ∧  𝑑  <s  𝐵 ) ) )  →  𝑑  ∈  (  O  ‘ (  bday  ‘ 𝐴 ) ) ) | 
						
							| 44 | 5 | fveq2d | ⊢ ( 𝜑  →  (  O  ‘ (  bday  ‘ 𝐴 ) )  =  (  O  ‘ (  bday  ‘ 𝐵 ) ) ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈   No   ∧  ( (  bday  ‘ 𝑑 )  ∈  (  bday  ‘ 𝐴 )  ∧  𝐴  <s  𝑑  ∧  𝑑  <s  𝐵 ) ) )  →  (  O  ‘ (  bday  ‘ 𝐴 ) )  =  (  O  ‘ (  bday  ‘ 𝐵 ) ) ) | 
						
							| 46 | 43 45 | eleqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈   No   ∧  ( (  bday  ‘ 𝑑 )  ∈  (  bday  ‘ 𝐴 )  ∧  𝐴  <s  𝑑  ∧  𝑑  <s  𝐵 ) ) )  →  𝑑  ∈  (  O  ‘ (  bday  ‘ 𝐵 ) ) ) | 
						
							| 47 |  | simprr3 | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈   No   ∧  ( (  bday  ‘ 𝑑 )  ∈  (  bday  ‘ 𝐴 )  ∧  𝐴  <s  𝑑  ∧  𝑑  <s  𝐵 ) ) )  →  𝑑  <s  𝐵 ) | 
						
							| 48 |  | leftval | ⊢ (  L  ‘ 𝐵 )  =  { 𝑑  ∈  (  O  ‘ (  bday  ‘ 𝐵 ) )  ∣  𝑑  <s  𝐵 } | 
						
							| 49 | 48 | reqabi | ⊢ ( 𝑑  ∈  (  L  ‘ 𝐵 )  ↔  ( 𝑑  ∈  (  O  ‘ (  bday  ‘ 𝐵 ) )  ∧  𝑑  <s  𝐵 ) ) | 
						
							| 50 | 46 47 49 | sylanbrc | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈   No   ∧  ( (  bday  ‘ 𝑑 )  ∈  (  bday  ‘ 𝐴 )  ∧  𝐴  <s  𝑑  ∧  𝑑  <s  𝐵 ) ) )  →  𝑑  ∈  (  L  ‘ 𝐵 ) ) | 
						
							| 51 |  | fnfvima | ⊢ ( (  -us   Fn   No   ∧  (  L  ‘ 𝐵 )  ⊆   No   ∧  𝑑  ∈  (  L  ‘ 𝐵 ) )  →  (  -us  ‘ 𝑑 )  ∈  (  -us   “  (  L  ‘ 𝐵 ) ) ) | 
						
							| 52 | 38 39 50 51 | mp3an12i | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈   No   ∧  ( (  bday  ‘ 𝑑 )  ∈  (  bday  ‘ 𝐴 )  ∧  𝐴  <s  𝑑  ∧  𝑑  <s  𝐵 ) ) )  →  (  -us  ‘ 𝑑 )  ∈  (  -us   “  (  L  ‘ 𝐵 ) ) ) | 
						
							| 53 | 34 37 52 | ssltsepcd | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈   No   ∧  ( (  bday  ‘ 𝑑 )  ∈  (  bday  ‘ 𝐴 )  ∧  𝐴  <s  𝑑  ∧  𝑑  <s  𝐵 ) ) )  →  (  -us  ‘ 𝐵 )  <s  (  -us  ‘ 𝑑 ) ) | 
						
							| 54 | 30 | simp2d | ⊢ ( 𝜑  →  (  -us   “  (  R  ‘ 𝐴 ) )  <<s  { (  -us  ‘ 𝐴 ) } ) | 
						
							| 55 | 54 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈   No   ∧  ( (  bday  ‘ 𝑑 )  ∈  (  bday  ‘ 𝐴 )  ∧  𝐴  <s  𝑑  ∧  𝑑  <s  𝐵 ) ) )  →  (  -us   “  (  R  ‘ 𝐴 ) )  <<s  { (  -us  ‘ 𝐴 ) } ) | 
						
							| 56 |  | rightssno | ⊢ (  R  ‘ 𝐴 )  ⊆   No | 
						
							| 57 |  | simprr2 | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈   No   ∧  ( (  bday  ‘ 𝑑 )  ∈  (  bday  ‘ 𝐴 )  ∧  𝐴  <s  𝑑  ∧  𝑑  <s  𝐵 ) ) )  →  𝐴  <s  𝑑 ) | 
						
							| 58 |  | rightval | ⊢ (  R  ‘ 𝐴 )  =  { 𝑑  ∈  (  O  ‘ (  bday  ‘ 𝐴 ) )  ∣  𝐴  <s  𝑑 } | 
						
							| 59 | 58 | reqabi | ⊢ ( 𝑑  ∈  (  R  ‘ 𝐴 )  ↔  ( 𝑑  ∈  (  O  ‘ (  bday  ‘ 𝐴 ) )  ∧  𝐴  <s  𝑑 ) ) | 
						
							| 60 | 43 57 59 | sylanbrc | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈   No   ∧  ( (  bday  ‘ 𝑑 )  ∈  (  bday  ‘ 𝐴 )  ∧  𝐴  <s  𝑑  ∧  𝑑  <s  𝐵 ) ) )  →  𝑑  ∈  (  R  ‘ 𝐴 ) ) | 
						
							| 61 |  | fnfvima | ⊢ ( (  -us   Fn   No   ∧  (  R  ‘ 𝐴 )  ⊆   No   ∧  𝑑  ∈  (  R  ‘ 𝐴 ) )  →  (  -us  ‘ 𝑑 )  ∈  (  -us   “  (  R  ‘ 𝐴 ) ) ) | 
						
							| 62 | 38 56 60 61 | mp3an12i | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈   No   ∧  ( (  bday  ‘ 𝑑 )  ∈  (  bday  ‘ 𝐴 )  ∧  𝐴  <s  𝑑  ∧  𝑑  <s  𝐵 ) ) )  →  (  -us  ‘ 𝑑 )  ∈  (  -us   “  (  R  ‘ 𝐴 ) ) ) | 
						
							| 63 |  | fvex | ⊢ (  -us  ‘ 𝐴 )  ∈  V | 
						
							| 64 | 63 | snid | ⊢ (  -us  ‘ 𝐴 )  ∈  { (  -us  ‘ 𝐴 ) } | 
						
							| 65 | 64 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈   No   ∧  ( (  bday  ‘ 𝑑 )  ∈  (  bday  ‘ 𝐴 )  ∧  𝐴  <s  𝑑  ∧  𝑑  <s  𝐵 ) ) )  →  (  -us  ‘ 𝐴 )  ∈  { (  -us  ‘ 𝐴 ) } ) | 
						
							| 66 | 55 62 65 | ssltsepcd | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈   No   ∧  ( (  bday  ‘ 𝑑 )  ∈  (  bday  ‘ 𝐴 )  ∧  𝐴  <s  𝑑  ∧  𝑑  <s  𝐵 ) ) )  →  (  -us  ‘ 𝑑 )  <s  (  -us  ‘ 𝐴 ) ) | 
						
							| 67 | 15 29 32 53 66 | slttrd | ⊢ ( ( 𝜑  ∧  ( 𝑑  ∈   No   ∧  ( (  bday  ‘ 𝑑 )  ∈  (  bday  ‘ 𝐴 )  ∧  𝐴  <s  𝑑  ∧  𝑑  <s  𝐵 ) ) )  →  (  -us  ‘ 𝐵 )  <s  (  -us  ‘ 𝐴 ) ) | 
						
							| 68 | 7 67 | rexlimddv | ⊢ ( 𝜑  →  (  -us  ‘ 𝐵 )  <s  (  -us  ‘ 𝐴 ) ) |