| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negsproplem.1 | ⊢ ( 𝜑  →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) ) | 
						
							| 2 |  | negsproplem4.1 | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
						
							| 3 |  | negsproplem4.2 | ⊢ ( 𝜑  →  𝐵  ∈   No  ) | 
						
							| 4 |  | negsproplem4.3 | ⊢ ( 𝜑  →  𝐴  <s  𝐵 ) | 
						
							| 5 |  | bdayelon | ⊢ (  bday  ‘ 𝐴 )  ∈  On | 
						
							| 6 | 5 | onordi | ⊢ Ord  (  bday  ‘ 𝐴 ) | 
						
							| 7 |  | bdayelon | ⊢ (  bday  ‘ 𝐵 )  ∈  On | 
						
							| 8 | 7 | onordi | ⊢ Ord  (  bday  ‘ 𝐵 ) | 
						
							| 9 |  | ordtri3or | ⊢ ( ( Ord  (  bday  ‘ 𝐴 )  ∧  Ord  (  bday  ‘ 𝐵 ) )  →  ( (  bday  ‘ 𝐴 )  ∈  (  bday  ‘ 𝐵 )  ∨  (  bday  ‘ 𝐴 )  =  (  bday  ‘ 𝐵 )  ∨  (  bday  ‘ 𝐵 )  ∈  (  bday  ‘ 𝐴 ) ) ) | 
						
							| 10 | 6 8 9 | mp2an | ⊢ ( (  bday  ‘ 𝐴 )  ∈  (  bday  ‘ 𝐵 )  ∨  (  bday  ‘ 𝐴 )  =  (  bday  ‘ 𝐵 )  ∨  (  bday  ‘ 𝐵 )  ∈  (  bday  ‘ 𝐴 ) ) | 
						
							| 11 | 1 | adantr | ⊢ ( ( 𝜑  ∧  (  bday  ‘ 𝐴 )  ∈  (  bday  ‘ 𝐵 ) )  →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) ) | 
						
							| 12 | 2 | adantr | ⊢ ( ( 𝜑  ∧  (  bday  ‘ 𝐴 )  ∈  (  bday  ‘ 𝐵 ) )  →  𝐴  ∈   No  ) | 
						
							| 13 | 3 | adantr | ⊢ ( ( 𝜑  ∧  (  bday  ‘ 𝐴 )  ∈  (  bday  ‘ 𝐵 ) )  →  𝐵  ∈   No  ) | 
						
							| 14 | 4 | adantr | ⊢ ( ( 𝜑  ∧  (  bday  ‘ 𝐴 )  ∈  (  bday  ‘ 𝐵 ) )  →  𝐴  <s  𝐵 ) | 
						
							| 15 |  | simpr | ⊢ ( ( 𝜑  ∧  (  bday  ‘ 𝐴 )  ∈  (  bday  ‘ 𝐵 ) )  →  (  bday  ‘ 𝐴 )  ∈  (  bday  ‘ 𝐵 ) ) | 
						
							| 16 | 11 12 13 14 15 | negsproplem4 | ⊢ ( ( 𝜑  ∧  (  bday  ‘ 𝐴 )  ∈  (  bday  ‘ 𝐵 ) )  →  (  -us  ‘ 𝐵 )  <s  (  -us  ‘ 𝐴 ) ) | 
						
							| 17 | 16 | ex | ⊢ ( 𝜑  →  ( (  bday  ‘ 𝐴 )  ∈  (  bday  ‘ 𝐵 )  →  (  -us  ‘ 𝐵 )  <s  (  -us  ‘ 𝐴 ) ) ) | 
						
							| 18 | 1 | adantr | ⊢ ( ( 𝜑  ∧  (  bday  ‘ 𝐴 )  =  (  bday  ‘ 𝐵 ) )  →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) ) | 
						
							| 19 | 2 | adantr | ⊢ ( ( 𝜑  ∧  (  bday  ‘ 𝐴 )  =  (  bday  ‘ 𝐵 ) )  →  𝐴  ∈   No  ) | 
						
							| 20 | 3 | adantr | ⊢ ( ( 𝜑  ∧  (  bday  ‘ 𝐴 )  =  (  bday  ‘ 𝐵 ) )  →  𝐵  ∈   No  ) | 
						
							| 21 | 4 | adantr | ⊢ ( ( 𝜑  ∧  (  bday  ‘ 𝐴 )  =  (  bday  ‘ 𝐵 ) )  →  𝐴  <s  𝐵 ) | 
						
							| 22 |  | simpr | ⊢ ( ( 𝜑  ∧  (  bday  ‘ 𝐴 )  =  (  bday  ‘ 𝐵 ) )  →  (  bday  ‘ 𝐴 )  =  (  bday  ‘ 𝐵 ) ) | 
						
							| 23 | 18 19 20 21 22 | negsproplem6 | ⊢ ( ( 𝜑  ∧  (  bday  ‘ 𝐴 )  =  (  bday  ‘ 𝐵 ) )  →  (  -us  ‘ 𝐵 )  <s  (  -us  ‘ 𝐴 ) ) | 
						
							| 24 | 23 | ex | ⊢ ( 𝜑  →  ( (  bday  ‘ 𝐴 )  =  (  bday  ‘ 𝐵 )  →  (  -us  ‘ 𝐵 )  <s  (  -us  ‘ 𝐴 ) ) ) | 
						
							| 25 | 1 | adantr | ⊢ ( ( 𝜑  ∧  (  bday  ‘ 𝐵 )  ∈  (  bday  ‘ 𝐴 ) )  →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘ 𝐵 ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) ) | 
						
							| 26 | 2 | adantr | ⊢ ( ( 𝜑  ∧  (  bday  ‘ 𝐵 )  ∈  (  bday  ‘ 𝐴 ) )  →  𝐴  ∈   No  ) | 
						
							| 27 | 3 | adantr | ⊢ ( ( 𝜑  ∧  (  bday  ‘ 𝐵 )  ∈  (  bday  ‘ 𝐴 ) )  →  𝐵  ∈   No  ) | 
						
							| 28 | 4 | adantr | ⊢ ( ( 𝜑  ∧  (  bday  ‘ 𝐵 )  ∈  (  bday  ‘ 𝐴 ) )  →  𝐴  <s  𝐵 ) | 
						
							| 29 |  | simpr | ⊢ ( ( 𝜑  ∧  (  bday  ‘ 𝐵 )  ∈  (  bday  ‘ 𝐴 ) )  →  (  bday  ‘ 𝐵 )  ∈  (  bday  ‘ 𝐴 ) ) | 
						
							| 30 | 25 26 27 28 29 | negsproplem5 | ⊢ ( ( 𝜑  ∧  (  bday  ‘ 𝐵 )  ∈  (  bday  ‘ 𝐴 ) )  →  (  -us  ‘ 𝐵 )  <s  (  -us  ‘ 𝐴 ) ) | 
						
							| 31 | 30 | ex | ⊢ ( 𝜑  →  ( (  bday  ‘ 𝐵 )  ∈  (  bday  ‘ 𝐴 )  →  (  -us  ‘ 𝐵 )  <s  (  -us  ‘ 𝐴 ) ) ) | 
						
							| 32 | 17 24 31 | 3jaod | ⊢ ( 𝜑  →  ( ( (  bday  ‘ 𝐴 )  ∈  (  bday  ‘ 𝐵 )  ∨  (  bday  ‘ 𝐴 )  =  (  bday  ‘ 𝐵 )  ∨  (  bday  ‘ 𝐵 )  ∈  (  bday  ‘ 𝐴 ) )  →  (  -us  ‘ 𝐵 )  <s  (  -us  ‘ 𝐴 ) ) ) | 
						
							| 33 | 10 32 | mpi | ⊢ ( 𝜑  →  (  -us  ‘ 𝐵 )  <s  (  -us  ‘ 𝐴 ) ) |