| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negsproplem.1 |  |-  ( ph -> A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x  ( -us ` y )  | 
						
							| 2 |  | negsproplem4.1 |  |-  ( ph -> A e. No ) | 
						
							| 3 |  | negsproplem4.2 |  |-  ( ph -> B e. No ) | 
						
							| 4 |  | negsproplem4.3 |  |-  ( ph -> A  | 
						
							| 5 |  | negsproplem6.4 |  |-  ( ph -> ( bday ` A ) = ( bday ` B ) ) | 
						
							| 6 |  | nodense |  |-  ( ( ( A e. No /\ B e. No ) /\ ( ( bday ` A ) = ( bday ` B ) /\ A  E. d e. No ( ( bday ` d ) e. ( bday ` A ) /\ A  | 
						
							| 7 | 2 3 5 4 6 | syl22anc |  |-  ( ph -> E. d e. No ( ( bday ` d ) e. ( bday ` A ) /\ A  | 
						
							| 8 |  | uncom |  |-  ( ( bday ` A ) u. ( bday ` B ) ) = ( ( bday ` B ) u. ( bday ` A ) ) | 
						
							| 9 | 8 | eleq2i |  |-  ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) <-> ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` B ) u. ( bday ` A ) ) ) | 
						
							| 10 | 9 | imbi1i |  |-  ( ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x  ( -us ` y )  ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` B ) u. ( bday ` A ) ) -> ( ( -us ` x ) e. No /\ ( x  ( -us ` y )  | 
						
							| 11 | 10 | 2ralbii |  |-  ( A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x  ( -us ` y )  A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` B ) u. ( bday ` A ) ) -> ( ( -us ` x ) e. No /\ ( x  ( -us ` y )  | 
						
							| 12 | 1 11 | sylib |  |-  ( ph -> A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` B ) u. ( bday ` A ) ) -> ( ( -us ` x ) e. No /\ ( x  ( -us ` y )  | 
						
							| 13 | 12 3 | negsproplem3 |  |-  ( ph -> ( ( -us ` B ) e. No /\ ( -us " ( _Right ` B ) ) < | 
						
							| 14 | 13 | simp1d |  |-  ( ph -> ( -us ` B ) e. No ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  ( -us ` B ) e. No ) | 
						
							| 16 | 1 | adantr |  |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x  ( -us ` y )  | 
						
							| 17 |  | simprl |  |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  d e. No ) | 
						
							| 18 |  | 0sno |  |-  0s e. No | 
						
							| 19 | 18 | a1i |  |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  0s e. No ) | 
						
							| 20 |  | bday0s |  |-  ( bday ` 0s ) = (/) | 
						
							| 21 | 20 | uneq2i |  |-  ( ( bday ` d ) u. ( bday ` 0s ) ) = ( ( bday ` d ) u. (/) ) | 
						
							| 22 |  | un0 |  |-  ( ( bday ` d ) u. (/) ) = ( bday ` d ) | 
						
							| 23 | 21 22 | eqtri |  |-  ( ( bday ` d ) u. ( bday ` 0s ) ) = ( bday ` d ) | 
						
							| 24 |  | simprr1 |  |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  ( bday ` d ) e. ( bday ` A ) ) | 
						
							| 25 |  | elun1 |  |-  ( ( bday ` d ) e. ( bday ` A ) -> ( bday ` d ) e. ( ( bday ` A ) u. ( bday ` B ) ) ) | 
						
							| 26 | 24 25 | syl |  |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  ( bday ` d ) e. ( ( bday ` A ) u. ( bday ` B ) ) ) | 
						
							| 27 | 23 26 | eqeltrid |  |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  ( ( bday ` d ) u. ( bday ` 0s ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) ) | 
						
							| 28 | 16 17 19 27 | negsproplem1 |  |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  ( ( -us ` d ) e. No /\ ( d  ( -us ` 0s )  | 
						
							| 29 | 28 | simpld |  |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  ( -us ` d ) e. No ) | 
						
							| 30 | 1 2 | negsproplem3 |  |-  ( ph -> ( ( -us ` A ) e. No /\ ( -us " ( _Right ` A ) ) < | 
						
							| 31 | 30 | simp1d |  |-  ( ph -> ( -us ` A ) e. No ) | 
						
							| 32 | 31 | adantr |  |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  ( -us ` A ) e. No ) | 
						
							| 33 | 13 | simp3d |  |-  ( ph -> { ( -us ` B ) } < | 
						
							| 34 | 33 | adantr |  |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  { ( -us ` B ) } < | 
						
							| 35 |  | fvex |  |-  ( -us ` B ) e. _V | 
						
							| 36 | 35 | snid |  |-  ( -us ` B ) e. { ( -us ` B ) } | 
						
							| 37 | 36 | a1i |  |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  ( -us ` B ) e. { ( -us ` B ) } ) | 
						
							| 38 |  | negsfn |  |-  -us Fn No | 
						
							| 39 |  | leftssno |  |-  ( _Left ` B ) C_ No | 
						
							| 40 |  | bdayelon |  |-  ( bday ` A ) e. On | 
						
							| 41 |  | oldbday |  |-  ( ( ( bday ` A ) e. On /\ d e. No ) -> ( d e. ( _Old ` ( bday ` A ) ) <-> ( bday ` d ) e. ( bday ` A ) ) ) | 
						
							| 42 | 40 17 41 | sylancr |  |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  ( d e. ( _Old ` ( bday ` A ) ) <-> ( bday ` d ) e. ( bday ` A ) ) ) | 
						
							| 43 | 24 42 | mpbird |  |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  d e. ( _Old ` ( bday ` A ) ) ) | 
						
							| 44 | 5 | fveq2d |  |-  ( ph -> ( _Old ` ( bday ` A ) ) = ( _Old ` ( bday ` B ) ) ) | 
						
							| 45 | 44 | adantr |  |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  ( _Old ` ( bday ` A ) ) = ( _Old ` ( bday ` B ) ) ) | 
						
							| 46 | 43 45 | eleqtrd |  |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  d e. ( _Old ` ( bday ` B ) ) ) | 
						
							| 47 |  | simprr3 |  |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  d  | 
						
							| 48 |  | leftval |  |-  ( _Left ` B ) = { d e. ( _Old ` ( bday ` B ) ) | d  | 
						
							| 49 | 48 | reqabi |  |-  ( d e. ( _Left ` B ) <-> ( d e. ( _Old ` ( bday ` B ) ) /\ d  | 
						
							| 50 | 46 47 49 | sylanbrc |  |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  d e. ( _Left ` B ) ) | 
						
							| 51 |  | fnfvima |  |-  ( ( -us Fn No /\ ( _Left ` B ) C_ No /\ d e. ( _Left ` B ) ) -> ( -us ` d ) e. ( -us " ( _Left ` B ) ) ) | 
						
							| 52 | 38 39 50 51 | mp3an12i |  |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  ( -us ` d ) e. ( -us " ( _Left ` B ) ) ) | 
						
							| 53 | 34 37 52 | ssltsepcd |  |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  ( -us ` B )  | 
						
							| 54 | 30 | simp2d |  |-  ( ph -> ( -us " ( _Right ` A ) ) < | 
						
							| 55 | 54 | adantr |  |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  ( -us " ( _Right ` A ) ) < | 
						
							| 56 |  | rightssno |  |-  ( _Right ` A ) C_ No | 
						
							| 57 |  | simprr2 |  |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  A  | 
						
							| 58 |  | rightval |  |-  ( _Right ` A ) = { d e. ( _Old ` ( bday ` A ) ) | A  | 
						
							| 59 | 58 | reqabi |  |-  ( d e. ( _Right ` A ) <-> ( d e. ( _Old ` ( bday ` A ) ) /\ A  | 
						
							| 60 | 43 57 59 | sylanbrc |  |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  d e. ( _Right ` A ) ) | 
						
							| 61 |  | fnfvima |  |-  ( ( -us Fn No /\ ( _Right ` A ) C_ No /\ d e. ( _Right ` A ) ) -> ( -us ` d ) e. ( -us " ( _Right ` A ) ) ) | 
						
							| 62 | 38 56 60 61 | mp3an12i |  |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  ( -us ` d ) e. ( -us " ( _Right ` A ) ) ) | 
						
							| 63 |  | fvex |  |-  ( -us ` A ) e. _V | 
						
							| 64 | 63 | snid |  |-  ( -us ` A ) e. { ( -us ` A ) } | 
						
							| 65 | 64 | a1i |  |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  ( -us ` A ) e. { ( -us ` A ) } ) | 
						
							| 66 | 55 62 65 | ssltsepcd |  |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  ( -us ` d )  | 
						
							| 67 | 15 29 32 53 66 | slttrd |  |-  ( ( ph /\ ( d e. No /\ ( ( bday ` d ) e. ( bday ` A ) /\ A  ( -us ` B )  | 
						
							| 68 | 7 67 | rexlimddv |  |-  ( ph -> ( -us ` B )  |