| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negsproplem.1 |  |-  ( ph -> A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` B ) ) -> ( ( -us ` x ) e. No /\ ( x  ( -us ` y )  | 
						
							| 2 |  | negsproplem2.1 |  |-  ( ph -> A e. No ) | 
						
							| 3 | 1 2 | negsproplem2 |  |-  ( ph -> ( -us " ( _Right ` A ) ) < | 
						
							| 4 |  | scutcut |  |-  ( ( -us " ( _Right ` A ) ) < ( ( ( -us " ( _Right ` A ) ) |s ( -us " ( _Left ` A ) ) ) e. No /\ ( -us " ( _Right ` A ) ) < | 
						
							| 5 | 3 4 | syl |  |-  ( ph -> ( ( ( -us " ( _Right ` A ) ) |s ( -us " ( _Left ` A ) ) ) e. No /\ ( -us " ( _Right ` A ) ) < | 
						
							| 6 |  | negsval |  |-  ( A e. No -> ( -us ` A ) = ( ( -us " ( _Right ` A ) ) |s ( -us " ( _Left ` A ) ) ) ) | 
						
							| 7 | 2 6 | syl |  |-  ( ph -> ( -us ` A ) = ( ( -us " ( _Right ` A ) ) |s ( -us " ( _Left ` A ) ) ) ) | 
						
							| 8 | 7 | eleq1d |  |-  ( ph -> ( ( -us ` A ) e. No <-> ( ( -us " ( _Right ` A ) ) |s ( -us " ( _Left ` A ) ) ) e. No ) ) | 
						
							| 9 | 7 | sneqd |  |-  ( ph -> { ( -us ` A ) } = { ( ( -us " ( _Right ` A ) ) |s ( -us " ( _Left ` A ) ) ) } ) | 
						
							| 10 | 9 | breq2d |  |-  ( ph -> ( ( -us " ( _Right ` A ) ) < ( -us " ( _Right ` A ) ) < | 
						
							| 11 | 9 | breq1d |  |-  ( ph -> ( { ( -us ` A ) } < { ( ( -us " ( _Right ` A ) ) |s ( -us " ( _Left ` A ) ) ) } < | 
						
							| 12 | 8 10 11 | 3anbi123d |  |-  ( ph -> ( ( ( -us ` A ) e. No /\ ( -us " ( _Right ` A ) ) < ( ( ( -us " ( _Right ` A ) ) |s ( -us " ( _Left ` A ) ) ) e. No /\ ( -us " ( _Right ` A ) ) < | 
						
							| 13 | 5 12 | mpbird |  |-  ( ph -> ( ( -us ` A ) e. No /\ ( -us " ( _Right ` A ) ) < |