Metamath Proof Explorer


Theorem negsproplem5

Description: Lemma for surreal negation. Show the second half of the inductive hypothesis when B is simpler than A . (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Hypotheses negsproplem.1 φ x No y No bday x bday y bday A bday B + s x No x < s y + s y < s + s x
negsproplem4.1 φ A No
negsproplem4.2 φ B No
negsproplem4.3 φ A < s B
negsproplem5.4 φ bday B bday A
Assertion negsproplem5 φ + s B < s + s A

Proof

Step Hyp Ref Expression
1 negsproplem.1 φ x No y No bday x bday y bday A bday B + s x No x < s y + s y < s + s x
2 negsproplem4.1 φ A No
3 negsproplem4.2 φ B No
4 negsproplem4.3 φ A < s B
5 negsproplem5.4 φ bday B bday A
6 1 2 negsproplem3 φ + s A No + s R A s + s A + s A s + s L A
7 6 simp2d φ + s R A s + s A
8 negsfn + s Fn No
9 rightssno R A No
10 bdayelon bday A On
11 oldbday bday A On B No B Old bday A bday B bday A
12 10 3 11 sylancr φ B Old bday A bday B bday A
13 5 12 mpbird φ B Old bday A
14 elright B R A B Old bday A A < s B
15 13 4 14 sylanbrc φ B R A
16 fnfvima + s Fn No R A No B R A + s B + s R A
17 8 9 15 16 mp3an12i φ + s B + s R A
18 fvex + s A V
19 18 snid + s A + s A
20 19 a1i φ + s A + s A
21 7 17 20 ssltsepcd φ + s B < s + s A