| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negsprop | ⊢ ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) | 
						
							| 2 | 1 | a1d | ⊢ ( ( 𝑥  ∈   No   ∧  𝑦  ∈   No  )  →  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘  0s  ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) ) | 
						
							| 3 | 2 | rgen2 | ⊢ ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘  0s  ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) | 
						
							| 4 | 3 | a1i | ⊢ ( 𝐴  ∈   No   →  ∀ 𝑥  ∈   No  ∀ 𝑦  ∈   No  ( ( (  bday  ‘ 𝑥 )  ∪  (  bday  ‘ 𝑦 ) )  ∈  ( (  bday  ‘ 𝐴 )  ∪  (  bday  ‘  0s  ) )  →  ( (  -us  ‘ 𝑥 )  ∈   No   ∧  ( 𝑥  <s  𝑦  →  (  -us  ‘ 𝑦 )  <s  (  -us  ‘ 𝑥 ) ) ) ) ) | 
						
							| 5 |  | id | ⊢ ( 𝐴  ∈   No   →  𝐴  ∈   No  ) | 
						
							| 6 | 4 5 | negsproplem3 | ⊢ ( 𝐴  ∈   No   →  ( (  -us  ‘ 𝐴 )  ∈   No   ∧  (  -us   “  (  R  ‘ 𝐴 ) )  <<s  { (  -us  ‘ 𝐴 ) }  ∧  { (  -us  ‘ 𝐴 ) }  <<s  (  -us   “  (  L  ‘ 𝐴 ) ) ) ) |