Metamath Proof Explorer


Theorem negscut

Description: The cut properties of surreal negation. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Assertion negscut ( 𝐴 No → ( ( -us𝐴 ) ∈ No ∧ ( -us “ ( R ‘ 𝐴 ) ) <<s { ( -us𝐴 ) } ∧ { ( -us𝐴 ) } <<s ( -us “ ( L ‘ 𝐴 ) ) ) )

Proof

Step Hyp Ref Expression
1 negsprop ( ( 𝑥 No 𝑦 No ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) )
2 1 a1d ( ( 𝑥 No 𝑦 No ) → ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝐴 ) ∪ ( bday ‘ 0s ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) )
3 2 rgen2 𝑥 No 𝑦 No ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝐴 ) ∪ ( bday ‘ 0s ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) )
4 3 a1i ( 𝐴 No → ∀ 𝑥 No 𝑦 No ( ( ( bday 𝑥 ) ∪ ( bday 𝑦 ) ) ∈ ( ( bday 𝐴 ) ∪ ( bday ‘ 0s ) ) → ( ( -us𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us𝑦 ) <s ( -us𝑥 ) ) ) ) )
5 id ( 𝐴 No 𝐴 No )
6 4 5 negsproplem3 ( 𝐴 No → ( ( -us𝐴 ) ∈ No ∧ ( -us “ ( R ‘ 𝐴 ) ) <<s { ( -us𝐴 ) } ∧ { ( -us𝐴 ) } <<s ( -us “ ( L ‘ 𝐴 ) ) ) )