Step |
Hyp |
Ref |
Expression |
1 |
|
negsprop |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) |
2 |
1
|
a1d |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) → ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 0s ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) |
3 |
2
|
rgen2 |
⊢ ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 0s ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) |
4 |
3
|
a1i |
⊢ ( 𝐴 ∈ No → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( bday ‘ 𝑥 ) ∪ ( bday ‘ 𝑦 ) ) ∈ ( ( bday ‘ 𝐴 ) ∪ ( bday ‘ 0s ) ) → ( ( -us ‘ 𝑥 ) ∈ No ∧ ( 𝑥 <s 𝑦 → ( -us ‘ 𝑦 ) <s ( -us ‘ 𝑥 ) ) ) ) ) |
5 |
|
id |
⊢ ( 𝐴 ∈ No → 𝐴 ∈ No ) |
6 |
4 5
|
negsproplem3 |
⊢ ( 𝐴 ∈ No → ( ( -us ‘ 𝐴 ) ∈ No ∧ ( -us “ ( R ‘ 𝐴 ) ) <<s { ( -us ‘ 𝐴 ) } ∧ { ( -us ‘ 𝐴 ) } <<s ( -us “ ( L ‘ 𝐴 ) ) ) ) |