| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negscut | ⊢ ( 𝐴  ∈   No   →  ( (  -us  ‘ 𝐴 )  ∈   No   ∧  (  -us   “  (  R  ‘ 𝐴 ) )  <<s  { (  -us  ‘ 𝐴 ) }  ∧  { (  -us  ‘ 𝐴 ) }  <<s  (  -us   “  (  L  ‘ 𝐴 ) ) ) ) | 
						
							| 2 | 1 | simp2d | ⊢ ( 𝐴  ∈   No   →  (  -us   “  (  R  ‘ 𝐴 ) )  <<s  { (  -us  ‘ 𝐴 ) } ) | 
						
							| 3 | 1 | simp3d | ⊢ ( 𝐴  ∈   No   →  { (  -us  ‘ 𝐴 ) }  <<s  (  -us   “  (  L  ‘ 𝐴 ) ) ) | 
						
							| 4 |  | fvex | ⊢ (  -us  ‘ 𝐴 )  ∈  V | 
						
							| 5 | 4 | snnz | ⊢ { (  -us  ‘ 𝐴 ) }  ≠  ∅ | 
						
							| 6 |  | sslttr | ⊢ ( ( (  -us   “  (  R  ‘ 𝐴 ) )  <<s  { (  -us  ‘ 𝐴 ) }  ∧  { (  -us  ‘ 𝐴 ) }  <<s  (  -us   “  (  L  ‘ 𝐴 ) )  ∧  { (  -us  ‘ 𝐴 ) }  ≠  ∅ )  →  (  -us   “  (  R  ‘ 𝐴 ) )  <<s  (  -us   “  (  L  ‘ 𝐴 ) ) ) | 
						
							| 7 | 5 6 | mp3an3 | ⊢ ( ( (  -us   “  (  R  ‘ 𝐴 ) )  <<s  { (  -us  ‘ 𝐴 ) }  ∧  { (  -us  ‘ 𝐴 ) }  <<s  (  -us   “  (  L  ‘ 𝐴 ) ) )  →  (  -us   “  (  R  ‘ 𝐴 ) )  <<s  (  -us   “  (  L  ‘ 𝐴 ) ) ) | 
						
							| 8 | 2 3 7 | syl2anc | ⊢ ( 𝐴  ∈   No   →  (  -us   “  (  R  ‘ 𝐴 ) )  <<s  (  -us   “  (  L  ‘ 𝐴 ) ) ) |