Step |
Hyp |
Ref |
Expression |
1 |
|
negscut |
⊢ ( 𝐴 ∈ No → ( ( -us ‘ 𝐴 ) ∈ No ∧ ( -us “ ( R ‘ 𝐴 ) ) <<s { ( -us ‘ 𝐴 ) } ∧ { ( -us ‘ 𝐴 ) } <<s ( -us “ ( L ‘ 𝐴 ) ) ) ) |
2 |
1
|
simp2d |
⊢ ( 𝐴 ∈ No → ( -us “ ( R ‘ 𝐴 ) ) <<s { ( -us ‘ 𝐴 ) } ) |
3 |
1
|
simp3d |
⊢ ( 𝐴 ∈ No → { ( -us ‘ 𝐴 ) } <<s ( -us “ ( L ‘ 𝐴 ) ) ) |
4 |
|
fvex |
⊢ ( -us ‘ 𝐴 ) ∈ V |
5 |
4
|
snnz |
⊢ { ( -us ‘ 𝐴 ) } ≠ ∅ |
6 |
|
sslttr |
⊢ ( ( ( -us “ ( R ‘ 𝐴 ) ) <<s { ( -us ‘ 𝐴 ) } ∧ { ( -us ‘ 𝐴 ) } <<s ( -us “ ( L ‘ 𝐴 ) ) ∧ { ( -us ‘ 𝐴 ) } ≠ ∅ ) → ( -us “ ( R ‘ 𝐴 ) ) <<s ( -us “ ( L ‘ 𝐴 ) ) ) |
7 |
5 6
|
mp3an3 |
⊢ ( ( ( -us “ ( R ‘ 𝐴 ) ) <<s { ( -us ‘ 𝐴 ) } ∧ { ( -us ‘ 𝐴 ) } <<s ( -us “ ( L ‘ 𝐴 ) ) ) → ( -us “ ( R ‘ 𝐴 ) ) <<s ( -us “ ( L ‘ 𝐴 ) ) ) |
8 |
2 3 7
|
syl2anc |
⊢ ( 𝐴 ∈ No → ( -us “ ( R ‘ 𝐴 ) ) <<s ( -us “ ( L ‘ 𝐴 ) ) ) |