Metamath Proof Explorer


Theorem negscut2

Description: The cut that defines surreal negation is legitimate. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Assertion negscut2 ( 𝐴 No → ( -us “ ( R ‘ 𝐴 ) ) <<s ( -us “ ( L ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 negscut ( 𝐴 No → ( ( -us𝐴 ) ∈ No ∧ ( -us “ ( R ‘ 𝐴 ) ) <<s { ( -us𝐴 ) } ∧ { ( -us𝐴 ) } <<s ( -us “ ( L ‘ 𝐴 ) ) ) )
2 1 simp2d ( 𝐴 No → ( -us “ ( R ‘ 𝐴 ) ) <<s { ( -us𝐴 ) } )
3 1 simp3d ( 𝐴 No → { ( -us𝐴 ) } <<s ( -us “ ( L ‘ 𝐴 ) ) )
4 fvex ( -us𝐴 ) ∈ V
5 4 snnz { ( -us𝐴 ) } ≠ ∅
6 sslttr ( ( ( -us “ ( R ‘ 𝐴 ) ) <<s { ( -us𝐴 ) } ∧ { ( -us𝐴 ) } <<s ( -us “ ( L ‘ 𝐴 ) ) ∧ { ( -us𝐴 ) } ≠ ∅ ) → ( -us “ ( R ‘ 𝐴 ) ) <<s ( -us “ ( L ‘ 𝐴 ) ) )
7 5 6 mp3an3 ( ( ( -us “ ( R ‘ 𝐴 ) ) <<s { ( -us𝐴 ) } ∧ { ( -us𝐴 ) } <<s ( -us “ ( L ‘ 𝐴 ) ) ) → ( -us “ ( R ‘ 𝐴 ) ) <<s ( -us “ ( L ‘ 𝐴 ) ) )
8 2 3 7 syl2anc ( 𝐴 No → ( -us “ ( R ‘ 𝐴 ) ) <<s ( -us “ ( L ‘ 𝐴 ) ) )