Metamath Proof Explorer


Theorem negscut

Description: The cut properties of surreal negation. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Assertion negscut Could not format assertion : No typesetting found for |- ( A e. No -> ( ( -us ` A ) e. No /\ ( -us " ( _Right ` A ) ) <

Proof

Step Hyp Ref Expression
1 negsprop Could not format ( ( x e. No /\ y e. No ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y ) ( ( -us ` x ) e. No /\ ( x ( -us ` y )
2 1 a1d Could not format ( ( x e. No /\ y e. No ) -> ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` 0s ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y ) ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` 0s ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y )
3 2 rgen2 Could not format A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` 0s ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y ) ( ( -us ` x ) e. No /\ ( x ( -us ` y )
4 3 a1i Could not format ( A e. No -> A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` 0s ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y ) A. x e. No A. y e. No ( ( ( bday ` x ) u. ( bday ` y ) ) e. ( ( bday ` A ) u. ( bday ` 0s ) ) -> ( ( -us ` x ) e. No /\ ( x ( -us ` y )
5 id ANoANo
6 4 5 negsproplem3 Could not format ( A e. No -> ( ( -us ` A ) e. No /\ ( -us " ( _Right ` A ) ) < ( ( -us ` A ) e. No /\ ( -us " ( _Right ` A ) ) <