Description: Product with negative is negative of product. Part of theorem 7 of Conway p. 19. (Contributed by Scott Fenton, 10-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mulnegs1d.1 | |- ( ph -> A e. No ) |
|
mulnegs1d.2 | |- ( ph -> B e. No ) |
||
Assertion | mulnegs2d | |- ( ph -> ( A x.s ( -us ` B ) ) = ( -us ` ( A x.s B ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulnegs1d.1 | |- ( ph -> A e. No ) |
|
2 | mulnegs1d.2 | |- ( ph -> B e. No ) |
|
3 | 2 1 | mulnegs1d | |- ( ph -> ( ( -us ` B ) x.s A ) = ( -us ` ( B x.s A ) ) ) |
4 | 2 | negscld | |- ( ph -> ( -us ` B ) e. No ) |
5 | 1 4 | mulscomd | |- ( ph -> ( A x.s ( -us ` B ) ) = ( ( -us ` B ) x.s A ) ) |
6 | 1 2 | mulscomd | |- ( ph -> ( A x.s B ) = ( B x.s A ) ) |
7 | 6 | fveq2d | |- ( ph -> ( -us ` ( A x.s B ) ) = ( -us ` ( B x.s A ) ) ) |
8 | 3 5 7 | 3eqtr4d | |- ( ph -> ( A x.s ( -us ` B ) ) = ( -us ` ( A x.s B ) ) ) |