Metamath Proof Explorer


Theorem mulnegs2d

Description: Product with negative is negative of product. Part of theorem 7 of Conway p. 19. (Contributed by Scott Fenton, 10-Mar-2025)

Ref Expression
Hypotheses mulnegs1d.1
|- ( ph -> A e. No )
mulnegs1d.2
|- ( ph -> B e. No )
Assertion mulnegs2d
|- ( ph -> ( A x.s ( -us ` B ) ) = ( -us ` ( A x.s B ) ) )

Proof

Step Hyp Ref Expression
1 mulnegs1d.1
 |-  ( ph -> A e. No )
2 mulnegs1d.2
 |-  ( ph -> B e. No )
3 2 1 mulnegs1d
 |-  ( ph -> ( ( -us ` B ) x.s A ) = ( -us ` ( B x.s A ) ) )
4 2 negscld
 |-  ( ph -> ( -us ` B ) e. No )
5 1 4 mulscomd
 |-  ( ph -> ( A x.s ( -us ` B ) ) = ( ( -us ` B ) x.s A ) )
6 1 2 mulscomd
 |-  ( ph -> ( A x.s B ) = ( B x.s A ) )
7 6 fveq2d
 |-  ( ph -> ( -us ` ( A x.s B ) ) = ( -us ` ( B x.s A ) ) )
8 3 5 7 3eqtr4d
 |-  ( ph -> ( A x.s ( -us ` B ) ) = ( -us ` ( A x.s B ) ) )