Description: Product with negative is negative of product. Part of theorem 7 of Conway p. 19. (Contributed by Scott Fenton, 10-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulnegs1d.1 | |- ( ph -> A e. No ) |
|
| mulnegs1d.2 | |- ( ph -> B e. No ) |
||
| Assertion | mulnegs2d | |- ( ph -> ( A x.s ( -us ` B ) ) = ( -us ` ( A x.s B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulnegs1d.1 | |- ( ph -> A e. No ) |
|
| 2 | mulnegs1d.2 | |- ( ph -> B e. No ) |
|
| 3 | 2 1 | mulnegs1d | |- ( ph -> ( ( -us ` B ) x.s A ) = ( -us ` ( B x.s A ) ) ) |
| 4 | 2 | negscld | |- ( ph -> ( -us ` B ) e. No ) |
| 5 | 1 4 | mulscomd | |- ( ph -> ( A x.s ( -us ` B ) ) = ( ( -us ` B ) x.s A ) ) |
| 6 | 1 2 | mulscomd | |- ( ph -> ( A x.s B ) = ( B x.s A ) ) |
| 7 | 6 | fveq2d | |- ( ph -> ( -us ` ( A x.s B ) ) = ( -us ` ( B x.s A ) ) ) |
| 8 | 3 5 7 | 3eqtr4d | |- ( ph -> ( A x.s ( -us ` B ) ) = ( -us ` ( A x.s B ) ) ) |