| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulnegs1d.1 |
|- ( ph -> A e. No ) |
| 2 |
|
mulnegs1d.2 |
|- ( ph -> B e. No ) |
| 3 |
2
|
negscld |
|- ( ph -> ( -us ` B ) e. No ) |
| 4 |
1 3
|
mulnegs1d |
|- ( ph -> ( ( -us ` A ) x.s ( -us ` B ) ) = ( -us ` ( A x.s ( -us ` B ) ) ) ) |
| 5 |
1 2
|
mulnegs2d |
|- ( ph -> ( A x.s ( -us ` B ) ) = ( -us ` ( A x.s B ) ) ) |
| 6 |
5
|
fveq2d |
|- ( ph -> ( -us ` ( A x.s ( -us ` B ) ) ) = ( -us ` ( -us ` ( A x.s B ) ) ) ) |
| 7 |
1 2
|
mulscld |
|- ( ph -> ( A x.s B ) e. No ) |
| 8 |
|
negnegs |
|- ( ( A x.s B ) e. No -> ( -us ` ( -us ` ( A x.s B ) ) ) = ( A x.s B ) ) |
| 9 |
7 8
|
syl |
|- ( ph -> ( -us ` ( -us ` ( A x.s B ) ) ) = ( A x.s B ) ) |
| 10 |
4 6 9
|
3eqtrd |
|- ( ph -> ( ( -us ` A ) x.s ( -us ` B ) ) = ( A x.s B ) ) |