| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulnegs1d.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 2 |
|
mulnegs1d.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 3 |
2
|
negscld |
⊢ ( 𝜑 → ( -us ‘ 𝐵 ) ∈ No ) |
| 4 |
1 3
|
mulnegs1d |
⊢ ( 𝜑 → ( ( -us ‘ 𝐴 ) ·s ( -us ‘ 𝐵 ) ) = ( -us ‘ ( 𝐴 ·s ( -us ‘ 𝐵 ) ) ) ) |
| 5 |
1 2
|
mulnegs2d |
⊢ ( 𝜑 → ( 𝐴 ·s ( -us ‘ 𝐵 ) ) = ( -us ‘ ( 𝐴 ·s 𝐵 ) ) ) |
| 6 |
5
|
fveq2d |
⊢ ( 𝜑 → ( -us ‘ ( 𝐴 ·s ( -us ‘ 𝐵 ) ) ) = ( -us ‘ ( -us ‘ ( 𝐴 ·s 𝐵 ) ) ) ) |
| 7 |
1 2
|
mulscld |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐵 ) ∈ No ) |
| 8 |
|
negnegs |
⊢ ( ( 𝐴 ·s 𝐵 ) ∈ No → ( -us ‘ ( -us ‘ ( 𝐴 ·s 𝐵 ) ) ) = ( 𝐴 ·s 𝐵 ) ) |
| 9 |
7 8
|
syl |
⊢ ( 𝜑 → ( -us ‘ ( -us ‘ ( 𝐴 ·s 𝐵 ) ) ) = ( 𝐴 ·s 𝐵 ) ) |
| 10 |
4 6 9
|
3eqtrd |
⊢ ( 𝜑 → ( ( -us ‘ 𝐴 ) ·s ( -us ‘ 𝐵 ) ) = ( 𝐴 ·s 𝐵 ) ) |