| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulnegs1d.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 2 |
|
mulnegs1d.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 3 |
1
|
negsidd |
⊢ ( 𝜑 → ( 𝐴 +s ( -us ‘ 𝐴 ) ) = 0s ) |
| 4 |
3
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 +s ( -us ‘ 𝐴 ) ) ·s 𝐵 ) = ( 0s ·s 𝐵 ) ) |
| 5 |
1
|
negscld |
⊢ ( 𝜑 → ( -us ‘ 𝐴 ) ∈ No ) |
| 6 |
1 5 2
|
addsdird |
⊢ ( 𝜑 → ( ( 𝐴 +s ( -us ‘ 𝐴 ) ) ·s 𝐵 ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( -us ‘ 𝐴 ) ·s 𝐵 ) ) ) |
| 7 |
|
muls02 |
⊢ ( 𝐵 ∈ No → ( 0s ·s 𝐵 ) = 0s ) |
| 8 |
2 7
|
syl |
⊢ ( 𝜑 → ( 0s ·s 𝐵 ) = 0s ) |
| 9 |
4 6 8
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) +s ( ( -us ‘ 𝐴 ) ·s 𝐵 ) ) = 0s ) |
| 10 |
1 2
|
mulscld |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐵 ) ∈ No ) |
| 11 |
10
|
negsidd |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) +s ( -us ‘ ( 𝐴 ·s 𝐵 ) ) ) = 0s ) |
| 12 |
9 11
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) +s ( ( -us ‘ 𝐴 ) ·s 𝐵 ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( -us ‘ ( 𝐴 ·s 𝐵 ) ) ) ) |
| 13 |
5 2
|
mulscld |
⊢ ( 𝜑 → ( ( -us ‘ 𝐴 ) ·s 𝐵 ) ∈ No ) |
| 14 |
10
|
negscld |
⊢ ( 𝜑 → ( -us ‘ ( 𝐴 ·s 𝐵 ) ) ∈ No ) |
| 15 |
13 14 10
|
addscan1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ·s 𝐵 ) +s ( ( -us ‘ 𝐴 ) ·s 𝐵 ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( -us ‘ ( 𝐴 ·s 𝐵 ) ) ) ↔ ( ( -us ‘ 𝐴 ) ·s 𝐵 ) = ( -us ‘ ( 𝐴 ·s 𝐵 ) ) ) ) |
| 16 |
12 15
|
mpbid |
⊢ ( 𝜑 → ( ( -us ‘ 𝐴 ) ·s 𝐵 ) = ( -us ‘ ( 𝐴 ·s 𝐵 ) ) ) |