| Step |
Hyp |
Ref |
Expression |
| 1 |
|
addsdid.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 2 |
|
addsdid.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 3 |
|
addsdid.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
| 4 |
3 1 2
|
addsdid |
⊢ ( 𝜑 → ( 𝐶 ·s ( 𝐴 +s 𝐵 ) ) = ( ( 𝐶 ·s 𝐴 ) +s ( 𝐶 ·s 𝐵 ) ) ) |
| 5 |
1 2
|
addscld |
⊢ ( 𝜑 → ( 𝐴 +s 𝐵 ) ∈ No ) |
| 6 |
5 3
|
mulscomd |
⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) ·s 𝐶 ) = ( 𝐶 ·s ( 𝐴 +s 𝐵 ) ) ) |
| 7 |
1 3
|
mulscomd |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐶 ) = ( 𝐶 ·s 𝐴 ) ) |
| 8 |
2 3
|
mulscomd |
⊢ ( 𝜑 → ( 𝐵 ·s 𝐶 ) = ( 𝐶 ·s 𝐵 ) ) |
| 9 |
7 8
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐶 ) +s ( 𝐵 ·s 𝐶 ) ) = ( ( 𝐶 ·s 𝐴 ) +s ( 𝐶 ·s 𝐵 ) ) ) |
| 10 |
4 6 9
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) ·s 𝐶 ) = ( ( 𝐴 ·s 𝐶 ) +s ( 𝐵 ·s 𝐶 ) ) ) |