Metamath Proof Explorer
		
		
		
		Description:  Distributive law for surreal numbers.  Commuted form of part of theorem
       7 of Conway p. 19.  (Contributed by Scott Fenton, 9-Mar-2025)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | addsdid.1 | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
					
						|  |  | addsdid.2 | ⊢ ( 𝜑  →  𝐵  ∈   No  ) | 
					
						|  |  | addsdid.3 | ⊢ ( 𝜑  →  𝐶  ∈   No  ) | 
				
					|  | Assertion | addsdid | ⊢  ( 𝜑  →  ( 𝐴  ·s  ( 𝐵  +s  𝐶 ) )  =  ( ( 𝐴  ·s  𝐵 )  +s  ( 𝐴  ·s  𝐶 ) ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | addsdid.1 | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
						
							| 2 |  | addsdid.2 | ⊢ ( 𝜑  →  𝐵  ∈   No  ) | 
						
							| 3 |  | addsdid.3 | ⊢ ( 𝜑  →  𝐶  ∈   No  ) | 
						
							| 4 |  | addsdi | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐴  ·s  ( 𝐵  +s  𝐶 ) )  =  ( ( 𝐴  ·s  𝐵 )  +s  ( 𝐴  ·s  𝐶 ) ) ) | 
						
							| 5 | 1 2 3 4 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴  ·s  ( 𝐵  +s  𝐶 ) )  =  ( ( 𝐴  ·s  𝐵 )  +s  ( 𝐴  ·s  𝐶 ) ) ) |