| Step | Hyp | Ref | Expression | 
						
							| 1 |  | addsdid.1 | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
						
							| 2 |  | addsdid.2 | ⊢ ( 𝜑  →  𝐵  ∈   No  ) | 
						
							| 3 |  | addsdid.3 | ⊢ ( 𝜑  →  𝐶  ∈   No  ) | 
						
							| 4 | 2 3 | subscld | ⊢ ( 𝜑  →  ( 𝐵  -s  𝐶 )  ∈   No  ) | 
						
							| 5 | 1 3 4 | addsdid | ⊢ ( 𝜑  →  ( 𝐴  ·s  ( 𝐶  +s  ( 𝐵  -s  𝐶 ) ) )  =  ( ( 𝐴  ·s  𝐶 )  +s  ( 𝐴  ·s  ( 𝐵  -s  𝐶 ) ) ) ) | 
						
							| 6 |  | pncan3s | ⊢ ( ( 𝐶  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝐶  +s  ( 𝐵  -s  𝐶 ) )  =  𝐵 ) | 
						
							| 7 | 3 2 6 | syl2anc | ⊢ ( 𝜑  →  ( 𝐶  +s  ( 𝐵  -s  𝐶 ) )  =  𝐵 ) | 
						
							| 8 | 7 | oveq2d | ⊢ ( 𝜑  →  ( 𝐴  ·s  ( 𝐶  +s  ( 𝐵  -s  𝐶 ) ) )  =  ( 𝐴  ·s  𝐵 ) ) | 
						
							| 9 | 5 8 | eqtr3d | ⊢ ( 𝜑  →  ( ( 𝐴  ·s  𝐶 )  +s  ( 𝐴  ·s  ( 𝐵  -s  𝐶 ) ) )  =  ( 𝐴  ·s  𝐵 ) ) | 
						
							| 10 | 1 2 | mulscld | ⊢ ( 𝜑  →  ( 𝐴  ·s  𝐵 )  ∈   No  ) | 
						
							| 11 | 1 3 | mulscld | ⊢ ( 𝜑  →  ( 𝐴  ·s  𝐶 )  ∈   No  ) | 
						
							| 12 | 1 4 | mulscld | ⊢ ( 𝜑  →  ( 𝐴  ·s  ( 𝐵  -s  𝐶 ) )  ∈   No  ) | 
						
							| 13 | 10 11 12 | subaddsd | ⊢ ( 𝜑  →  ( ( ( 𝐴  ·s  𝐵 )  -s  ( 𝐴  ·s  𝐶 ) )  =  ( 𝐴  ·s  ( 𝐵  -s  𝐶 ) )  ↔  ( ( 𝐴  ·s  𝐶 )  +s  ( 𝐴  ·s  ( 𝐵  -s  𝐶 ) ) )  =  ( 𝐴  ·s  𝐵 ) ) ) | 
						
							| 14 | 9 13 | mpbird | ⊢ ( 𝜑  →  ( ( 𝐴  ·s  𝐵 )  -s  ( 𝐴  ·s  𝐶 ) )  =  ( 𝐴  ·s  ( 𝐵  -s  𝐶 ) ) ) | 
						
							| 15 | 14 | eqcomd | ⊢ ( 𝜑  →  ( 𝐴  ·s  ( 𝐵  -s  𝐶 ) )  =  ( ( 𝐴  ·s  𝐵 )  -s  ( 𝐴  ·s  𝐶 ) ) ) |