| Step | Hyp | Ref | Expression | 
						
							| 1 |  | addsdid.1 |  |-  ( ph -> A e. No ) | 
						
							| 2 |  | addsdid.2 |  |-  ( ph -> B e. No ) | 
						
							| 3 |  | addsdid.3 |  |-  ( ph -> C e. No ) | 
						
							| 4 | 2 3 | subscld |  |-  ( ph -> ( B -s C ) e. No ) | 
						
							| 5 | 1 3 4 | addsdid |  |-  ( ph -> ( A x.s ( C +s ( B -s C ) ) ) = ( ( A x.s C ) +s ( A x.s ( B -s C ) ) ) ) | 
						
							| 6 |  | pncan3s |  |-  ( ( C e. No /\ B e. No ) -> ( C +s ( B -s C ) ) = B ) | 
						
							| 7 | 3 2 6 | syl2anc |  |-  ( ph -> ( C +s ( B -s C ) ) = B ) | 
						
							| 8 | 7 | oveq2d |  |-  ( ph -> ( A x.s ( C +s ( B -s C ) ) ) = ( A x.s B ) ) | 
						
							| 9 | 5 8 | eqtr3d |  |-  ( ph -> ( ( A x.s C ) +s ( A x.s ( B -s C ) ) ) = ( A x.s B ) ) | 
						
							| 10 | 1 2 | mulscld |  |-  ( ph -> ( A x.s B ) e. No ) | 
						
							| 11 | 1 3 | mulscld |  |-  ( ph -> ( A x.s C ) e. No ) | 
						
							| 12 | 1 4 | mulscld |  |-  ( ph -> ( A x.s ( B -s C ) ) e. No ) | 
						
							| 13 | 10 11 12 | subaddsd |  |-  ( ph -> ( ( ( A x.s B ) -s ( A x.s C ) ) = ( A x.s ( B -s C ) ) <-> ( ( A x.s C ) +s ( A x.s ( B -s C ) ) ) = ( A x.s B ) ) ) | 
						
							| 14 | 9 13 | mpbird |  |-  ( ph -> ( ( A x.s B ) -s ( A x.s C ) ) = ( A x.s ( B -s C ) ) ) | 
						
							| 15 | 14 | eqcomd |  |-  ( ph -> ( A x.s ( B -s C ) ) = ( ( A x.s B ) -s ( A x.s C ) ) ) |