Step |
Hyp |
Ref |
Expression |
1 |
|
addsdid.1 |
|- ( ph -> A e. No ) |
2 |
|
addsdid.2 |
|- ( ph -> B e. No ) |
3 |
|
addsdid.3 |
|- ( ph -> C e. No ) |
4 |
3 1 2
|
subsdid |
|- ( ph -> ( C x.s ( A -s B ) ) = ( ( C x.s A ) -s ( C x.s B ) ) ) |
5 |
1 2
|
subscld |
|- ( ph -> ( A -s B ) e. No ) |
6 |
5 3
|
mulscomd |
|- ( ph -> ( ( A -s B ) x.s C ) = ( C x.s ( A -s B ) ) ) |
7 |
1 3
|
mulscomd |
|- ( ph -> ( A x.s C ) = ( C x.s A ) ) |
8 |
2 3
|
mulscomd |
|- ( ph -> ( B x.s C ) = ( C x.s B ) ) |
9 |
7 8
|
oveq12d |
|- ( ph -> ( ( A x.s C ) -s ( B x.s C ) ) = ( ( C x.s A ) -s ( C x.s B ) ) ) |
10 |
4 6 9
|
3eqtr4d |
|- ( ph -> ( ( A -s B ) x.s C ) = ( ( A x.s C ) -s ( B x.s C ) ) ) |