Metamath Proof Explorer


Theorem subsdird

Description: Distribution of surreal multiplication over subtraction. (Contributed by Scott Fenton, 9-Mar-2025)

Ref Expression
Hypotheses addsdid.1
|- ( ph -> A e. No )
addsdid.2
|- ( ph -> B e. No )
addsdid.3
|- ( ph -> C e. No )
Assertion subsdird
|- ( ph -> ( ( A -s B ) x.s C ) = ( ( A x.s C ) -s ( B x.s C ) ) )

Proof

Step Hyp Ref Expression
1 addsdid.1
 |-  ( ph -> A e. No )
2 addsdid.2
 |-  ( ph -> B e. No )
3 addsdid.3
 |-  ( ph -> C e. No )
4 3 1 2 subsdid
 |-  ( ph -> ( C x.s ( A -s B ) ) = ( ( C x.s A ) -s ( C x.s B ) ) )
5 1 2 subscld
 |-  ( ph -> ( A -s B ) e. No )
6 5 3 mulscomd
 |-  ( ph -> ( ( A -s B ) x.s C ) = ( C x.s ( A -s B ) ) )
7 1 3 mulscomd
 |-  ( ph -> ( A x.s C ) = ( C x.s A ) )
8 2 3 mulscomd
 |-  ( ph -> ( B x.s C ) = ( C x.s B ) )
9 7 8 oveq12d
 |-  ( ph -> ( ( A x.s C ) -s ( B x.s C ) ) = ( ( C x.s A ) -s ( C x.s B ) ) )
10 4 6 9 3eqtr4d
 |-  ( ph -> ( ( A -s B ) x.s C ) = ( ( A x.s C ) -s ( B x.s C ) ) )