Metamath Proof Explorer


Theorem subscld

Description: Closure law for surreal subtraction. (Contributed by Scott Fenton, 5-Feb-2025)

Ref Expression
Hypotheses subscld.1
|- ( ph -> A e. No )
subscld.2
|- ( ph -> B e. No )
Assertion subscld
|- ( ph -> ( A -s B ) e. No )

Proof

Step Hyp Ref Expression
1 subscld.1
 |-  ( ph -> A e. No )
2 subscld.2
 |-  ( ph -> B e. No )
3 subscl
 |-  ( ( A e. No /\ B e. No ) -> ( A -s B ) e. No )
4 1 2 3 syl2anc
 |-  ( ph -> ( A -s B ) e. No )