Description: Identity law for subtraction. (Contributed by Scott Fenton, 3-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subsid1 | |- ( A e. No -> ( A -s 0s ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0sno | |- 0s e. No |
|
| 2 | subsval | |- ( ( A e. No /\ 0s e. No ) -> ( A -s 0s ) = ( A +s ( -us ` 0s ) ) ) |
|
| 3 | 1 2 | mpan2 | |- ( A e. No -> ( A -s 0s ) = ( A +s ( -us ` 0s ) ) ) |
| 4 | negs0s | |- ( -us ` 0s ) = 0s |
|
| 5 | 4 | oveq2i | |- ( A +s ( -us ` 0s ) ) = ( A +s 0s ) |
| 6 | addsrid | |- ( A e. No -> ( A +s 0s ) = A ) |
|
| 7 | 5 6 | eqtrid | |- ( A e. No -> ( A +s ( -us ` 0s ) ) = A ) |
| 8 | 3 7 | eqtrd | |- ( A e. No -> ( A -s 0s ) = A ) |