Metamath Proof Explorer


Theorem subsid

Description: Subtraction of a surreal from itself. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Assertion subsid
|- ( A e. No -> ( A -s A ) = 0s )

Proof

Step Hyp Ref Expression
1 subsval
 |-  ( ( A e. No /\ A e. No ) -> ( A -s A ) = ( A +s ( -us ` A ) ) )
2 1 anidms
 |-  ( A e. No -> ( A -s A ) = ( A +s ( -us ` A ) ) )
3 negsid
 |-  ( A e. No -> ( A +s ( -us ` A ) ) = 0s )
4 2 3 eqtrd
 |-  ( A e. No -> ( A -s A ) = 0s )