Description: Subtraction of a surreal from itself. (Contributed by Scott Fenton, 3-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subsid | |- ( A e. No -> ( A -s A ) = 0s ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subsval | |- ( ( A e. No /\ A e. No ) -> ( A -s A ) = ( A +s ( -us ` A ) ) ) |
|
| 2 | 1 | anidms | |- ( A e. No -> ( A -s A ) = ( A +s ( -us ` A ) ) ) |
| 3 | negsid | |- ( A e. No -> ( A +s ( -us ` A ) ) = 0s ) |
|
| 4 | 2 3 | eqtrd | |- ( A e. No -> ( A -s A ) = 0s ) |