Step |
Hyp |
Ref |
Expression |
1 |
|
subsval |
|- ( ( A e. No /\ B e. No ) -> ( A -s B ) = ( A +s ( -us ` B ) ) ) |
2 |
1
|
3adant3 |
|- ( ( A e. No /\ B e. No /\ C e. No ) -> ( A -s B ) = ( A +s ( -us ` B ) ) ) |
3 |
2
|
eqeq1d |
|- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A -s B ) = C <-> ( A +s ( -us ` B ) ) = C ) ) |
4 |
|
simpl |
|- ( ( B e. No /\ C e. No ) -> B e. No ) |
5 |
|
simpr |
|- ( ( B e. No /\ C e. No ) -> C e. No ) |
6 |
|
negscl |
|- ( B e. No -> ( -us ` B ) e. No ) |
7 |
6
|
adantr |
|- ( ( B e. No /\ C e. No ) -> ( -us ` B ) e. No ) |
8 |
4 5 7
|
adds32d |
|- ( ( B e. No /\ C e. No ) -> ( ( B +s C ) +s ( -us ` B ) ) = ( ( B +s ( -us ` B ) ) +s C ) ) |
9 |
|
negsid |
|- ( B e. No -> ( B +s ( -us ` B ) ) = 0s ) |
10 |
9
|
adantr |
|- ( ( B e. No /\ C e. No ) -> ( B +s ( -us ` B ) ) = 0s ) |
11 |
10
|
oveq1d |
|- ( ( B e. No /\ C e. No ) -> ( ( B +s ( -us ` B ) ) +s C ) = ( 0s +s C ) ) |
12 |
|
addslid |
|- ( C e. No -> ( 0s +s C ) = C ) |
13 |
12
|
adantl |
|- ( ( B e. No /\ C e. No ) -> ( 0s +s C ) = C ) |
14 |
8 11 13
|
3eqtrd |
|- ( ( B e. No /\ C e. No ) -> ( ( B +s C ) +s ( -us ` B ) ) = C ) |
15 |
14
|
3adant1 |
|- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( B +s C ) +s ( -us ` B ) ) = C ) |
16 |
15
|
eqeq1d |
|- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( ( B +s C ) +s ( -us ` B ) ) = ( A +s ( -us ` B ) ) <-> C = ( A +s ( -us ` B ) ) ) ) |
17 |
|
eqcom |
|- ( C = ( A +s ( -us ` B ) ) <-> ( A +s ( -us ` B ) ) = C ) |
18 |
16 17
|
bitrdi |
|- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( ( B +s C ) +s ( -us ` B ) ) = ( A +s ( -us ` B ) ) <-> ( A +s ( -us ` B ) ) = C ) ) |
19 |
|
addscl |
|- ( ( B e. No /\ C e. No ) -> ( B +s C ) e. No ) |
20 |
19
|
3adant1 |
|- ( ( A e. No /\ B e. No /\ C e. No ) -> ( B +s C ) e. No ) |
21 |
|
simp1 |
|- ( ( A e. No /\ B e. No /\ C e. No ) -> A e. No ) |
22 |
|
simp2 |
|- ( ( A e. No /\ B e. No /\ C e. No ) -> B e. No ) |
23 |
22
|
negscld |
|- ( ( A e. No /\ B e. No /\ C e. No ) -> ( -us ` B ) e. No ) |
24 |
20 21 23
|
addscan2d |
|- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( ( B +s C ) +s ( -us ` B ) ) = ( A +s ( -us ` B ) ) <-> ( B +s C ) = A ) ) |
25 |
3 18 24
|
3bitr2d |
|- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A -s B ) = C <-> ( B +s C ) = A ) ) |