| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subsval |  |-  ( ( A e. No /\ B e. No ) -> ( A -s B ) = ( A +s ( -us ` B ) ) ) | 
						
							| 2 | 1 | 3adant3 |  |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( A -s B ) = ( A +s ( -us ` B ) ) ) | 
						
							| 3 | 2 | eqeq1d |  |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A -s B ) = C <-> ( A +s ( -us ` B ) ) = C ) ) | 
						
							| 4 |  | simpl |  |-  ( ( B e. No /\ C e. No ) -> B e. No ) | 
						
							| 5 |  | simpr |  |-  ( ( B e. No /\ C e. No ) -> C e. No ) | 
						
							| 6 |  | negscl |  |-  ( B e. No -> ( -us ` B ) e. No ) | 
						
							| 7 | 6 | adantr |  |-  ( ( B e. No /\ C e. No ) -> ( -us ` B ) e. No ) | 
						
							| 8 | 4 5 7 | adds32d |  |-  ( ( B e. No /\ C e. No ) -> ( ( B +s C ) +s ( -us ` B ) ) = ( ( B +s ( -us ` B ) ) +s C ) ) | 
						
							| 9 |  | negsid |  |-  ( B e. No -> ( B +s ( -us ` B ) ) = 0s ) | 
						
							| 10 | 9 | adantr |  |-  ( ( B e. No /\ C e. No ) -> ( B +s ( -us ` B ) ) = 0s ) | 
						
							| 11 | 10 | oveq1d |  |-  ( ( B e. No /\ C e. No ) -> ( ( B +s ( -us ` B ) ) +s C ) = ( 0s +s C ) ) | 
						
							| 12 |  | addslid |  |-  ( C e. No -> ( 0s +s C ) = C ) | 
						
							| 13 | 12 | adantl |  |-  ( ( B e. No /\ C e. No ) -> ( 0s +s C ) = C ) | 
						
							| 14 | 8 11 13 | 3eqtrd |  |-  ( ( B e. No /\ C e. No ) -> ( ( B +s C ) +s ( -us ` B ) ) = C ) | 
						
							| 15 | 14 | 3adant1 |  |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( B +s C ) +s ( -us ` B ) ) = C ) | 
						
							| 16 | 15 | eqeq1d |  |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( ( B +s C ) +s ( -us ` B ) ) = ( A +s ( -us ` B ) ) <-> C = ( A +s ( -us ` B ) ) ) ) | 
						
							| 17 |  | eqcom |  |-  ( C = ( A +s ( -us ` B ) ) <-> ( A +s ( -us ` B ) ) = C ) | 
						
							| 18 | 16 17 | bitrdi |  |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( ( B +s C ) +s ( -us ` B ) ) = ( A +s ( -us ` B ) ) <-> ( A +s ( -us ` B ) ) = C ) ) | 
						
							| 19 |  | addscl |  |-  ( ( B e. No /\ C e. No ) -> ( B +s C ) e. No ) | 
						
							| 20 | 19 | 3adant1 |  |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( B +s C ) e. No ) | 
						
							| 21 |  | simp1 |  |-  ( ( A e. No /\ B e. No /\ C e. No ) -> A e. No ) | 
						
							| 22 |  | simp2 |  |-  ( ( A e. No /\ B e. No /\ C e. No ) -> B e. No ) | 
						
							| 23 | 22 | negscld |  |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( -us ` B ) e. No ) | 
						
							| 24 | 20 21 23 | addscan2d |  |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( ( B +s C ) +s ( -us ` B ) ) = ( A +s ( -us ` B ) ) <-> ( B +s C ) = A ) ) | 
						
							| 25 | 3 18 24 | 3bitr2d |  |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A -s B ) = C <-> ( B +s C ) = A ) ) |