Metamath Proof Explorer


Theorem adds32d

Description: Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by Scott Fenton, 22-Jan-2025)

Ref Expression
Hypotheses addsassd.1
|- ( ph -> A e. No )
addsassd.2
|- ( ph -> B e. No )
addsassd.3
|- ( ph -> C e. No )
Assertion adds32d
|- ( ph -> ( ( A +s B ) +s C ) = ( ( A +s C ) +s B ) )

Proof

Step Hyp Ref Expression
1 addsassd.1
 |-  ( ph -> A e. No )
2 addsassd.2
 |-  ( ph -> B e. No )
3 addsassd.3
 |-  ( ph -> C e. No )
4 2 3 addscomd
 |-  ( ph -> ( B +s C ) = ( C +s B ) )
5 4 oveq2d
 |-  ( ph -> ( A +s ( B +s C ) ) = ( A +s ( C +s B ) ) )
6 1 2 3 addsassd
 |-  ( ph -> ( ( A +s B ) +s C ) = ( A +s ( B +s C ) ) )
7 1 3 2 addsassd
 |-  ( ph -> ( ( A +s C ) +s B ) = ( A +s ( C +s B ) ) )
8 5 6 7 3eqtr4d
 |-  ( ph -> ( ( A +s B ) +s C ) = ( ( A +s C ) +s B ) )