Description: Surreal addition is associative. Part of theorem 3 of Conway p. 17. (Contributed by Scott Fenton, 22-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | addsassd.1 | |- ( ph -> A e. No ) |
|
| addsassd.2 | |- ( ph -> B e. No ) |
||
| addsassd.3 | |- ( ph -> C e. No ) |
||
| Assertion | addsassd | |- ( ph -> ( ( A +s B ) +s C ) = ( A +s ( B +s C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addsassd.1 | |- ( ph -> A e. No ) |
|
| 2 | addsassd.2 | |- ( ph -> B e. No ) |
|
| 3 | addsassd.3 | |- ( ph -> C e. No ) |
|
| 4 | addsass | |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A +s B ) +s C ) = ( A +s ( B +s C ) ) ) |
|
| 5 | 1 2 3 4 | syl3anc | |- ( ph -> ( ( A +s B ) +s C ) = ( A +s ( B +s C ) ) ) |