Metamath Proof Explorer


Theorem addsassd

Description: Surreal addition is associative. Part of theorem 3 of Conway p. 17. (Contributed by Scott Fenton, 22-Jan-2025)

Ref Expression
Hypotheses addsassd.1
|- ( ph -> A e. No )
addsassd.2
|- ( ph -> B e. No )
addsassd.3
|- ( ph -> C e. No )
Assertion addsassd
|- ( ph -> ( ( A +s B ) +s C ) = ( A +s ( B +s C ) ) )

Proof

Step Hyp Ref Expression
1 addsassd.1
 |-  ( ph -> A e. No )
2 addsassd.2
 |-  ( ph -> B e. No )
3 addsassd.3
 |-  ( ph -> C e. No )
4 addsass
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A +s B ) +s C ) = ( A +s ( B +s C ) ) )
5 1 2 3 4 syl3anc
 |-  ( ph -> ( ( A +s B ) +s C ) = ( A +s ( B +s C ) ) )