Metamath Proof Explorer


Theorem addsassd

Description: Surreal addition is associative. Part of theorem 3 of Conway p. 17. (Contributed by Scott Fenton, 22-Jan-2025)

Ref Expression
Hypotheses addsassd.1 φANo
addsassd.2 φBNo
addsassd.3 φCNo
Assertion addsassd Could not format assertion : No typesetting found for |- ( ph -> ( ( A +s B ) +s C ) = ( A +s ( B +s C ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 addsassd.1 φANo
2 addsassd.2 φBNo
3 addsassd.3 φCNo
4 addsass Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A +s B ) +s C ) = ( A +s ( B +s C ) ) ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A +s B ) +s C ) = ( A +s ( B +s C ) ) ) with typecode |-
5 1 2 3 4 syl3anc Could not format ( ph -> ( ( A +s B ) +s C ) = ( A +s ( B +s C ) ) ) : No typesetting found for |- ( ph -> ( ( A +s B ) +s C ) = ( A +s ( B +s C ) ) ) with typecode |-