Metamath Proof Explorer


Theorem adds32d

Description: Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by Scott Fenton, 22-Jan-2025)

Ref Expression
Hypotheses addsassd.1 ( 𝜑𝐴 No )
addsassd.2 ( 𝜑𝐵 No )
addsassd.3 ( 𝜑𝐶 No )
Assertion adds32d ( 𝜑 → ( ( 𝐴 +s 𝐵 ) +s 𝐶 ) = ( ( 𝐴 +s 𝐶 ) +s 𝐵 ) )

Proof

Step Hyp Ref Expression
1 addsassd.1 ( 𝜑𝐴 No )
2 addsassd.2 ( 𝜑𝐵 No )
3 addsassd.3 ( 𝜑𝐶 No )
4 2 3 addscomd ( 𝜑 → ( 𝐵 +s 𝐶 ) = ( 𝐶 +s 𝐵 ) )
5 4 oveq2d ( 𝜑 → ( 𝐴 +s ( 𝐵 +s 𝐶 ) ) = ( 𝐴 +s ( 𝐶 +s 𝐵 ) ) )
6 1 2 3 addsassd ( 𝜑 → ( ( 𝐴 +s 𝐵 ) +s 𝐶 ) = ( 𝐴 +s ( 𝐵 +s 𝐶 ) ) )
7 1 3 2 addsassd ( 𝜑 → ( ( 𝐴 +s 𝐶 ) +s 𝐵 ) = ( 𝐴 +s ( 𝐶 +s 𝐵 ) ) )
8 5 6 7 3eqtr4d ( 𝜑 → ( ( 𝐴 +s 𝐵 ) +s 𝐶 ) = ( ( 𝐴 +s 𝐶 ) +s 𝐵 ) )