Description: Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by Scott Fenton, 9-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | addsassd.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| addsassd.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | ||
| addsassd.3 | ⊢ ( 𝜑 → 𝐶 ∈ No ) | ||
| Assertion | adds12d | ⊢ ( 𝜑 → ( 𝐴 +s ( 𝐵 +s 𝐶 ) ) = ( 𝐵 +s ( 𝐴 +s 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addsassd.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| 2 | addsassd.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | |
| 3 | addsassd.3 | ⊢ ( 𝜑 → 𝐶 ∈ No ) | |
| 4 | 1 2 | addscomd | ⊢ ( 𝜑 → ( 𝐴 +s 𝐵 ) = ( 𝐵 +s 𝐴 ) ) |
| 5 | 4 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) +s 𝐶 ) = ( ( 𝐵 +s 𝐴 ) +s 𝐶 ) ) |
| 6 | 1 2 3 | addsassd | ⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) +s 𝐶 ) = ( 𝐴 +s ( 𝐵 +s 𝐶 ) ) ) |
| 7 | 2 1 3 | addsassd | ⊢ ( 𝜑 → ( ( 𝐵 +s 𝐴 ) +s 𝐶 ) = ( 𝐵 +s ( 𝐴 +s 𝐶 ) ) ) |
| 8 | 5 6 7 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝐴 +s ( 𝐵 +s 𝐶 ) ) = ( 𝐵 +s ( 𝐴 +s 𝐶 ) ) ) |