Metamath Proof Explorer


Theorem subaddsd

Description: Relationship between addition and subtraction for surreals. (Contributed by Scott Fenton, 5-Feb-2025)

Ref Expression
Hypotheses subaddsd.1
|- ( ph -> A e. No )
subaddsd.2
|- ( ph -> B e. No )
subaddsd.3
|- ( ph -> C e. No )
Assertion subaddsd
|- ( ph -> ( ( A -s B ) = C <-> ( B +s C ) = A ) )

Proof

Step Hyp Ref Expression
1 subaddsd.1
 |-  ( ph -> A e. No )
2 subaddsd.2
 |-  ( ph -> B e. No )
3 subaddsd.3
 |-  ( ph -> C e. No )
4 subadds
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A -s B ) = C <-> ( B +s C ) = A ) )
5 1 2 3 4 syl3anc
 |-  ( ph -> ( ( A -s B ) = C <-> ( B +s C ) = A ) )