Metamath Proof Explorer
		
		
		
		Description:  Relationship between addition and subtraction for surreals.
       (Contributed by Scott Fenton, 5-Feb-2025)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | subaddsd.1 | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
					
						|  |  | subaddsd.2 | ⊢ ( 𝜑  →  𝐵  ∈   No  ) | 
					
						|  |  | subaddsd.3 | ⊢ ( 𝜑  →  𝐶  ∈   No  ) | 
				
					|  | Assertion | subaddsd | ⊢  ( 𝜑  →  ( ( 𝐴  -s  𝐵 )  =  𝐶  ↔  ( 𝐵  +s  𝐶 )  =  𝐴 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subaddsd.1 | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
						
							| 2 |  | subaddsd.2 | ⊢ ( 𝜑  →  𝐵  ∈   No  ) | 
						
							| 3 |  | subaddsd.3 | ⊢ ( 𝜑  →  𝐶  ∈   No  ) | 
						
							| 4 |  | subadds | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( ( 𝐴  -s  𝐵 )  =  𝐶  ↔  ( 𝐵  +s  𝐶 )  =  𝐴 ) ) | 
						
							| 5 | 1 2 3 4 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐴  -s  𝐵 )  =  𝐶  ↔  ( 𝐵  +s  𝐶 )  =  𝐴 ) ) |